首页 | 本学科首页   官方微博 | 高级检索  
     


Potential for greenhouse gas emissions from soil carbon stock following biofuel cultivation on degraded lands
Authors:P. K. R. Nair  Subhrajit K. Saha  Vimala D. Nair  Solomon G. Haile
Abstract:Consequent to the interest in converting degraded lands for cultivation of biofuel crops, concerns have been expressed about greenhouse gas (GHG) emissions resulting from changes in soil‐carbon (C) stock following land conversions. A literature‐based study was undertaken for estimating the magnitude of emission of GHGs, particularly carbon dioxide (CO2), following an assessment of the extent and causes of land degradation and the nature of CO2 emission from soils. The study estimated the potential for CO2 emission resulting from changes in soil‐carbon stock following land conversions, using oil palm (Elaeis guineensis Jacq.) as a case study. The analysis indicated that, overall, the magnitude of CO2 emission resulting from changes in soil C stock per se following opening up of degraded land would be low compared with other potential sources of CO2 emission. However, lack of data on critical aspects such as baseline soil C status was a limitation of the study. Soil respiration is the single best measure of GHG emission from soils. Fixation of C in additional biomass will compensate, over time, for C loss through soil respiration following a change in land use or land management, unless such changes involve conversion of existing large C stocks. Therefore, any net CO2 emission from soils resulting from changes in soil C stock following opening up of degraded land is likely to be a short‐term phenomenon. The estimations used in the study are based on various assumptions, which need to be validated by experimental field data. Copyright © 2010 John Wiley & Sons, Ltd.
Keywords:biodiesel crop  carbon dioxide emission  net primary productivity  oil palm  organic matter decomposition  soil organic carbon  soil respiration
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号