首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heterologous expression of the ThIPK2 gene enhances drought resistance of common wheat
Authors:ZHANG Shu-juan  LI Yu-lian  SONG Guo-qi  GAO Jie  ZHANG Rong-zhi  LI Wei  CHEN Ming-li  LI Gen-ying
Institution:Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on North Yellow and Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat and Maize, Jinan 250100, P.R.China
Abstract:Th IPK2 is an inositol polyphosphate kinase gene cloned from Thellungiella halophila that participates in diverse cellular processes. Drought is a major limiting factor in wheat(Triticum aestivum L.) production. The present study investigated whether the application of the Th IPK2 gene could increase the drought resistance of transgenic wheat. The codon-optimized Th IPK2 gene was transferred into common wheat through Agrobacterium-mediated transformation driven by either a constitutive maize ubiquitin promoter or a stress-inducible rd29 A promoter from Arabidopsis. Molecular characterization confirmed the presence of the foreign gene in the transformed plants. The transgenic expression of Th IPK2 in wheat led to significantly improve drought tolerance compared to that observed in control plants. Compared to the wild type(WT) plants, the transgenic plants showed higher seed germination rates, better developed root systems, a higher relative water content(RWC) and total soluble sugar content, and less cell membrane damage under drought stress conditions. The expression profiles showed different expression patterns with the use of different promoters. The codon-optimized Th IPK2 gene is a candidate gene to enhance wheat drought stress tolerance by genetic engineering.
Keywords:codon-optimized  drought  rd29A
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《农业科学学报(英文版)》浏览原始摘要信息
点击此处可从《农业科学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号