The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model |
| |
Authors: | Joshua P. Schimel Michael N. Weintraub |
| |
Affiliation: | Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA |
| |
Abstract: | Traditional models of soil organic matter (SOM) decomposition are all based on first order kinetics in which the decomposition rate of a particular C pool is proportional to the size of the pool and a simple decomposition constant (dC/dt=kC). In fact, SOM decomposition is catalyzed by extracellular enzymes that are produced by microorganisms. We built a simple theoretical model to explore the behavior of the decomposition-microbial growth system when the fundamental kinetic assumption is changed from first order kinetics to exoenzymes catalyzed decomposition (dC/dt=KC×Enzymes). An analysis of the enzyme kinetics showed that there must be some mechanism to produce a non-linear response of decomposition rates to enzyme concentration—the most likely is competition for enzyme binding on solid substrates as predicted by Langmuir adsorption isotherm theory. This non-linearity also induces C limitation, regardless of the potential supply of C. The linked C and N version of the model showed that actual polymer breakdown and microbial use of the released monomers can be disconnected, and that it requires relatively little N to maintain the maximal rate of decomposition, regardless of the microbial biomass’ ability to use the breakdown products. In this model, adding a pulse of C to an N limited system increases respiration, while adding N actually decreases respiration (as C is redirected from waste respiration to microbial growth). For many years, researchers have argued that the lack of a respiratory response by soil microbes to added N indicates that they are not N limited. This model suggests that conclusion may be wrong. While total C flow may be limited by the functioning of the exoenzyme system, actual microbial growth may be N limited. |
| |
Keywords: | Extracellular enzymes Decomposition Soil organic matter Kinetics Model |
本文献已被 ScienceDirect 等数据库收录! |
|