首页 | 本学科首页   官方微博 | 高级检索  
     检索      

小麦锈菌蛋白激酶基因家族的鉴定与生物信息学分析
引用本文:李闯,许笑蒙,李博,刘娜,李春奇,郑文明.小麦锈菌蛋白激酶基因家族的鉴定与生物信息学分析[J].植物保护学报,2018,45(1):53-59.
作者姓名:李闯  许笑蒙  李博  刘娜  李春奇  郑文明
作者单位:河南农业大学生命科学学院, 小麦玉米作物学国家重点实验室, 河南粮食作物协同创新中心, 郑州 450002,河南农业大学生命科学学院, 小麦玉米作物学国家重点实验室, 河南粮食作物协同创新中心, 郑州 450002,河南农业大学生命科学学院, 小麦玉米作物学国家重点实验室, 河南粮食作物协同创新中心, 郑州 450002,河南农业大学生命科学学院, 小麦玉米作物学国家重点实验室, 河南粮食作物协同创新中心, 郑州 450002,河南农业大学生命科学学院, 小麦玉米作物学国家重点实验室, 河南粮食作物协同创新中心, 郑州 450002,河南农业大学生命科学学院, 小麦玉米作物学国家重点实验室, 河南粮食作物协同创新中心, 郑州 450002
基金项目:国家重点基础研究发展计划(2013CB127702),河南省科技创新杰出人才计划(154200510024),河南省重大科技专项(161100110400)
摘    要:为深入分析锈菌结构基因组,阐明锈菌毒性变异的分子机制,本研究通过生物信息分析方法,对3种小麦锈菌蛋白激酶(protein kinases,PKs)超家族预测基因进行了系统分析,利用COG(clusters of orthologous groups of proteins)、KEGG(Kyoto encyclopedia of genes and genomes)、GO(gene ontology)和PHI(pathogen-host interactions)数据库进行注释分析,并对小麦锈菌MAPK基因的蛋白质互作网络进行预测。结果表明,条锈菌Puccinia striiformis、叶锈菌P.triticina和秆锈菌P.graminis的PKs基因数量分别为221、159和159个,不同PKs基因家族类型在3种锈菌中的数量分布上表现出很高的保守性。注释分析表明,PKs家族预测功能涉及病原菌生长发育中的调控作用和病原菌-寄主互作机制,包括信号传导和致病因子等。PKs家族核心基因数目在蛋白激酶基因中占比大于1/3。MAPK基因的催化结构域序列呈现高度相似性。以STRING数据库的酿酒酵母蛋白质互作网络信息为参考,对小麦锈菌MAPK基因的蛋白质互作网络进行预测,共鉴定出25个互作关系,包含29个MAPK基因。研究表明这3种锈菌之间MAPK互作蛋白质分布不均衡,这可能反映了锈菌基因组进化的特殊复杂性。

关 键 词:小麦锈菌  蛋白激酶  进化  基因组结构  蛋白互作
收稿时间:2017/9/4 0:00:00

Identification and bioinformatics analysis for protein kinases of the wheat rust fungi
Li Chuang,Xu Xiaomeng,Li Bo,Liu N,Li Chunqi and Zheng Wenming.Identification and bioinformatics analysis for protein kinases of the wheat rust fungi[J].Acta Phytophylacica Sinica,2018,45(1):53-59.
Authors:Li Chuang  Xu Xiaomeng  Li Bo  Liu N  Li Chunqi and Zheng Wenming
Institution:State Key Laboratory of Wheat and Maize Crop Sciences, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan Province, China,State Key Laboratory of Wheat and Maize Crop Sciences, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan Province, China,State Key Laboratory of Wheat and Maize Crop Sciences, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan Province, China,State Key Laboratory of Wheat and Maize Crop Sciences, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan Province, China,State Key Laboratory of Wheat and Maize Crop Sciences, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan Province, China and State Key Laboratory of Wheat and Maize Crop Sciences, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural University, Zhengzhou 450002, Henan Province, China
Abstract:Wheat rusts caused by Puccinia striiformis, P. triticina and P. graminis, which often lead to serious yield losses of wheat, are the most important wheat diseases worldwide. In order to deeply analyze the structural genome for the wheat rust fungi and elucidate their molecular mechanism of pathogenicity variation, this study was performed by bioinformatics approaches to annotate and systematically dissect the gene superfamily coding for protein kinases of the wheat rust fungi, annotated by COG, KEGG, GO and PHI databases. Furthermore, a predicted protein-protein interaction network of MAPK genes for these rust fungi was established with the bioinformatics data. In total, 221, 159 and 159 genes coding protein kinases for P. striiformis, P. triticina and P. graminis were identified respectively, and the number distribution of different categories showed a high conservatism among them. The annotation results indicated that the protein kinase superfamily might play pivotal regulatory role in processes of growth and development, also the host-pathogen interactions, including signal transduction and pathogenic factors. The core gene set analysis of protein kinases revealed that the core genes accounted for more than a third of all proteins kinases. MAPK analysis found that the catalytic structure of MAPK genes showed high similarity. The protein-protein interaction network of MAPK genes was predicted using Saccharomyces cerevisiae as a reference through STRING database and 25 interaction relationships including 29 MAPK genes were identified out. The overall analysis suggested that MAPK interaction of rusts was unbalanced in protein distribution, which might reflect the complexity of the evolution for rust genomes.
Keywords:wheat rust fungi  protein kinases  evolution  genome structure  protein-protein interaction
本文献已被 CNKI 等数据库收录!
点击此处可从《植物保护学报》浏览原始摘要信息
点击此处可从《植物保护学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号