首页 | 本学科首页   官方微博 | 高级检索  
     


Fatigue analysis of plates used for fracture stabilization in small dogs and cats
Authors:Hammel Scott P  Elizabeth Pluhar G  Novo Roberto E  Bourgeault Craig A  Wallace Larry J
Affiliation:University Of Minnesota Veterinary Medical Center, St. Paul, 55108, USA. hamme065@umn.edu
Abstract:OBJECTIVE: To evaluate the fatigue life of stacked and single, veterinary cuttable plates (VCP) and small, limited contact, dynamic compression plates (LC-DCP). STUDY DESIGN: In vitro biomechanical study. METHODS: Fracture models (constructs; n = 8) were assembled for each of 6 groups all with 8-hole plates: 2.0 mm LC-DCP; 2.4 mm LC-DCP; single 1.5/2.0 mm VCP; stacked 1.5/2.0 mm VCP; single 2.0/2.7 mm VCP; and stacked 2.0/2.7 mm VCP. Plate(s) were secured to 2 polyvinylchloride pipe lengths, mounted in a testing system with a custom jig, and subjected to axial loading (10-100 N) for 1,000,000 cycles at 10 Hz or until failure. Differences in number of cycles to failure among groups were compared. Failure mode was determined. RESULTS: All LC-DCP and single VCP constructs failed before 1,000,000 cycles. Stacked 2.0/2.7 mm VCP constructs withstood 1,000,000 cycles without failure. ANOVA and Fisher's least significant difference tests demonstrated significantly more cycles to failure for the stacked 1.5/2.0 mm VCP and stacked 2.0/2.7 mm VCP compared with the single 1.5/2.0 mm VCP, single 2.0/2.7 mm VCP, 2.0 mm LC-DCP, or 2.4 mm LC-DCP. Constructs that failed did so through a screw hole adjacent to the gap. CONCLUSION: Stacked VCP constructs have greater fatigue lives than comparably sized LC-DCP or single VCP constructs. Plates with 2.4 mm screws were not significantly different from the comparable construct with 2.0 mm screws. CLINICAL RELEVANCE: Although these data reveal that stacked VCP create a superior construct with respect to cyclic fatigue, surgeons must decide whether this is a clinical advantage on a case-by-case basis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号