首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal effects on the development of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) and model validation in Taiwan
Authors:Ana Clariza Samayoa  Kyung San Choi  Yun-Shiuan Wang  Shaw-Yhi Hwang  Yu-Bing Huang  Jeong Joon Ahn
Affiliation:1.Department of Entomology,National Chung Hsing University,Taichung,Taiwan, Republic of China;2.Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science,Rural Development Administration,Jeju,Republic of Korea;3.Taiwan Agricultural Research Institute,Taichung,Taiwan, Republic of China
Abstract:The oriental fruit fly, Bactrocera dorsalis (Hendel), is a major polyphagous insect pest with a worldwide distribution. The effects of temperature on stage-specific development in B. dorsalis were investigated at eight constant temperatures (13.0 °C, 14.4 °C, 16.2 °C, 19.5 °C, 23.8 °C, 27.7 °C, 31.8 °C and 34.8 °C). B. dorsalis developed successfully from the egg stage to the adult stage at all the tested temperatures, except at the lowest temperatures (13.0 °C and 14.4 °C). Stage-specific lower developmental thresholds and thermal constants were determined using linear regression. The lower and higher temperature threshold (TL and TH, respectively) were estimated using the Sharpe-Schoolfield-Ikemoto model. The lower developmental threshold and thermal constant from egg to adult emergence were 9.8 °C and 325.5 degree-days, respectively. The intrinsic optimum temperatures of the egg, larval, pupal and egg to pupal stage were 20.7 °C, 21.8 °C, 21.1 °C, and 22.4 °C, respectively. The temperature range of the B. dorsalis total immature stage from TL to TH was 20.4 °C (13.8 °C - 34.2 °C). The stage-specific developmental completion of B. dorsalis was determined using a two-parameter Weibull function. The daily adult emergence frequency of B. dorsalis was estimated in relation to adult age and temperature using non-linear developmental rate functions and the Weibull function. The date of cumulative 50% adult emergence estimated using non-linear functions was approximately one day earlier than the experimentally observed date. Thermal performance was compared among B. dorsalis populations from different locations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号