首页 | 本学科首页   官方微博 | 高级检索  
     


Proximal soil sensing of soil texture and organic matter with a prototype portable mid‐infrared spectrometer
Authors:N. M. Dhawale  V. I. Adamchuk  S. O. Prasher  R. A. Viscarra Rossel  A. A. Ismail  J. Kaur
Affiliation:1. Department of Bioresource Engineering, McGill University, Sainte‐Anne‐de‐Bellevue, Quebec, Canada;2. CSIRO Land and Water Flagship, Bruce E. Butler Laboratory, Canberra, Australian Capital Territory, Australia;3. Department of Food Science and Agricultural Chemistry, McGill University, Sainte‐Anne‐de‐Bellevue, Quebec, Canada
Abstract:Recent advances in semiconductor technologies have given rise to the development of mid‐infrared (mid‐IR) spectrometers that are compact, relatively inexpensive, robust and suitable for in situ proximal soil sensing. The objectives of this research were to evaluate a prototype portable mid‐IR spectrometer for direct measurements of soil reflectance and to model the spectra to predict sand, clay and soil organic matter (SOM) contents under a range of field soil water conditions. Soil samples were collected from 23 locations at different depths in four agricultural fields to represent a range of soil textures, from sands to clay loams. The particle size distribution and SOM content of 48 soil samples were measured in the laboratory by conventional analytical methods. In addition to air‐dry soil, each sample was wetted with two different amounts of water before the spectroscopic measurements were made. The prototype spectrometer was used to measure reflectance (R) in the range between 1811 and 898 cm?1 (approximately 5522 to 11 136 nm). The spectroscopic measurements were recorded randomly and in triplicate, resulting in a total of 432 reflectance spectra (48 samples × three soil water contents × three replicates). The spectra were transformed to log10 (1/R) and mean centred for the multivariate statistical analyses. The 48 samples were split randomly into a calibration set (70%) and a validation set (30%). A partial least squares regression (PLSR) was used to develop spectroscopic calibrations to predict sand, clay and SOM contents. Results show that the portable spectrometer can be used with PLSR to predict clay and sand contents of either wet or dry soil samples with a root mean square error (RMSE) of around 10%. Predictions of SOM content resulted in RMSE values that ranged between 0.76 and 2.24%.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号