首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Variation in canopy structure, light and soil nutrition across elevation of a Sri Lankan tropical rain forest
Authors:Sisira Ediriweera  BMP Singhakumara  Mark S Ashton  
Institution:aDepartment of Forestry and Environmental Science, University of Sri Jayewardenepura, Sri Lanka;bSchool of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, United States
Abstract:Mixed dipterocarp forests are perhaps the single most important rain forest type in the wet tropics. Only a few studies have purposefully examined differences in resource availability across mixed dipterocarp forest landscapes by simply measuring the abiotic variables of light, soil nutrition and soil water availability in relation to forest structure. We sought to directly measure the environment of canopy gaps across elevation and geology—from lowland mixed dipterocarp forest (100 m amsl) to lower montane dipterocarp forest (1200 m amsl) in southwest Sri Lanka. Middle elevation gap sites (300–900 m amsl) were subdivided into valley, mid-slope and ridge topographic positions. Eighteen natural disturbances all of which were canopy openings caused by tree fall, were randomly selected within primary rain forest that ranged across 100–1200 m elevation. Plots were placed in gap centers and in adjacent understories and measurements taken of forest structure (basal area, canopy height, canopy cover index, CCI), shade (light sensors—photosynthetically active radiation PAR], canopy hemispherical photographs—global site factor GSF]) and soil nutrition (pH, exchangeable Al, K, Mg and Ca; Total N; and plant available P). Soil moisture was measured at bi-weekly intervals for five years across middle elevation sites only (300–900 m amsl). Stand basal area, mean canopy height, and canopy cover index all declined with increase in elevation. Understory PAR and GSF decreased with increases in canopy height, basal area and CCI. Size of canopy opening decreased with increase in elevation, but PAR and GSF increased. Valley sites had significantly greater levels of mean percent soil water content as compared to mid-slope and ridge sites of middle elevation sites. However, at the onset of the southwest monsoons in May all sites were similar. Differences were most pronounced during the dry season (December–April). No differences in soil moisture content could be found between gap and understory microsites. K and Ca in gap centers and adjacent forest understories increased with increase in elevation and change in associated geology. pH increased and Al decreased with elevation and associated geology but only for forest understory conditions. Results demonstrate strong differentiation in soil and light resources with elevation that appears related to size of tree-fall disturbance, stature of the forest, topographic position and underlying geology and soil-weathering environment. This suggests that forest management and conservation practices need to develop and tailor techniques and treatments (silviculture) to the forest that emulate and/or account for change in elevation, geology and topographic position. Further studies are needed to identify which are the primary underlying mechanisms (e.g. temperature, wind, soil nutrients, soil moisture availability) defining change in forest structure across elevation.
Keywords:Aluminum  Calcium  Dipterocarpus  Disturbance  Gap dynamics  Mesua  PPF  Mixed dipterocarp forest  Monsoon  Regeneration  Shorea  Sinharaja  Soil moisture  Sri Lanka
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号