首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Stoichiometric Traits of Nitrogen and Phosphorus in Soil on Photosynthetic Characteristics of Wheat
Authors:Qiang Shi  Li Zhang  Fankun Wang
Institution:1. Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education &2. Jiangsu Province, Jiangsu University , Zhenjiang, P.R. China
Abstract:ABSTRACT

To improve the use efficiency of fertilizer in agricultural production, effects of stoichiometric traits of soil available nitrogen (N) and phosphorus (P) on photosynthetic gas exchange parameters and fluorescence parameters of wheat were revealed in a full factorial pot experiment with our N and P fertilizer rates each. Results showed that at the same level of soil available N, the net photosynthetic rate (Pn), stomatal conductance (Cond), photochemical quenching (qP), the quantum yield of PSII photochemistry (ΦPSII), and apparent electron transport rate (ETR) of wheat generally increased with a decline of soil N/P ecological stoichiometric ratio (by increasing soil available P), whereas the intercellular CO2 concentration (Ci) and nonphotochemical quenching (NPQ) of wheat decreased with a decline of soil N/P. At the same level of soil available P, Pn, Cond, qP, ΦPSII, and ETR of wheat initially increased and then decreased with an increase of soil N/P ecological stoichiometric ratio (by increasing soil available N), whereas the dynamics of Ci and NPQ of wheat were exactly opposite to those of the above parameters. A limiting effect of soil available P on the photosynthesis of wheat occurred during the entire experiment. It was deduced that the cultivated soil, with the available N of 258.4 mg·kg?1, available P of 89.6 mg·kg?1, and stoichiometric N/P of 2.88, was suitable for weak gluten wheat cultivar Yangmai15. Therefore, another approach to improves nutrient use efficiency was provided on the basis of ecological stoichiometry theory.
Keywords:Ecological stoichiometry  photosynthetic physiology  N/P  nutrient optimizationwheat
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号