首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进PCNN的番茄植株夜间图像分割算法
作者姓名:项荣  张杰兰
作者单位:中国计量大学质量与安全工程学院,杭州310018;中国计量大学质量与安全工程学院,杭州310018
基金项目:浙江省自然科学基金项目(LY17C130006)
摘    要:为实现番茄植株夜间图像分割,设计了一种基于最大类间方差法的改进脉冲耦合神经网络(PCNN)图像分割算法。该算法对传统PCNN模型中的链接输入项进行加权处理,在进行图像分割前,先基于最大类间方差(Otsu)算法获得阈值,再将该阈值赋值给改进PCNN模型中的链接输入项权值、突触链接系数β、链接权放大系数VE和阈值迭代衰减时间常数αE。对849幅番茄植株夜间图像进行试验,结果表明,图像分割正确率平均值为90. 43%,平均每幅图像分割时间为0. 994 4 s;输入链接项的加权处理可减少PCNN的迭代次数,提高算法的实时性;基于Otsu算法可实现改进PCNN模型的网络参数自适应设置。基于视觉效果、最大熵及分割正确率这3项评价指标的对比分析显示,改进PCNN模型的分割效果优于Otsu算法和传统PCNN模型,实时性优于传统PCNN模型。

关 键 词:番茄植株  夜间图像  脉冲耦合神经网络  图像分割  
收稿时间:2019-07-29
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号