首页 | 本学科首页   官方微博 | 高级检索  
     


Sulfur isotope dynamics in a high-elevation catchment,West Glacier lake,Wyoming
Authors:J. B. Finley  J. I. Drever  J. T. Turk
Affiliation:1. Department of Geology and Geophysics, University of Wyoming, 82071, Laramie, WY, USA
3. MS 415, Denver Federal Center, U.S. Geological Survey, Box 25046, 80225, Denver, CO, USA
Abstract:Stable isotopes of S are used in conjunction with dissolved SO 4 2? concentrations to evaluate the utility ofδ 34S ratios in tracing contributions of bedrock-derived S to SO 4 2? in runoff. Water samples were collected over the annual hydrograph from two tributaries in the West Glacier Lake, Wyoming, catchment. Concentrations of SO 4 2? ranged from 12.6 to 43.0 Μeq L?1;δ 34S ratios ranged from ?1.8‰ to +4.9‰ Theδ 34S value of atmospherically derived SO 4 2? is about +5.6%c.; four samples of pyrite from the bedrock hadδ 34S ratios that ranged from +0.7 to +4.1‰ Concentrations of SO 4 2? were inversely related toδ 34S and discharge. The data for the tributary with the higher SO 4 2? concentrations were reasonably consistent with mixing between atmospheric S and S from a bedrock source with aδ 34S ratio of about ?4.5‰. The difference from the measured bedrock values presumably indicates that S isotopes in the bedrock pyrite are heterogeneously distributed. The data from the tributary with lower SO 4 2? concentrations did not follow a two-component mixing line. Deviation from a two-component mixing line is most likely caused by preferential elution of SO 4 2? from the snowpack during the early stages of snowmelt, although microbially mediated fractionation of S isotopes in the soil zone also may cause the deviation from the mixing line. Sulfur isotopes are useful in identifying whether or not there is a substantial contribution of bedrock S to runoff, but quantifying that contribution is problematic.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号