首页 | 本学科首页   官方微博 | 高级检索  
     

基于SPA-SSA-BP的小麦秸秆含水率检测模型
引用本文:孟志军,刘淮玉,安晓飞,尹彦鑫,金诚谦,张安琪. 基于SPA-SSA-BP的小麦秸秆含水率检测模型[J]. 农业机械学报, 2022, 53(2): 231-238,245
作者姓名:孟志军  刘淮玉  安晓飞  尹彦鑫  金诚谦  张安琪
作者单位:黑龙江八一农垦大学工程学院,大庆163319;国家农业智能装备工程技术研究中心,北京100097;国家农业智能装备工程技术研究中心,北京100097;北京市农林科学院智能装备技术研究中心,北京100097;农业农村部南京农业机械化研究所,南京210014
基金项目:国家重点研发计划项目(2019YFB1312304)、北京市农林科学院创新能力建设专项(KJCX20200416)和江苏省农业科技自主创新专项(CX(20)1007)
摘    要:为提高基于电容法的小麦秸秆含水率检测模型的检测精度,扩大含水率检测范围,提高模型适应性,本文以小麦秸秆为研究对象,使用LCR数字电桥,测量含水率为10.43% ~25.89%的秸秆在频率0.05 ~ 100 kHz、容积密度90.03 ~179.42 kg/m3和温度25 ~40℃内的电容,利用连续投影法(Succes...

关 键 词:小麦  秸秆  含水率  检测模型  电容  麻雀搜索算法
收稿时间:2021-11-05

Prediction Model of Wheat Straw Moisture Content Based on SPA-SSA-BP
MENG Zhijun,LIU Huaiyu,AN Xiaofei,YIN Yanxin,JIN Chengqian,ZHANG Anqi. Prediction Model of Wheat Straw Moisture Content Based on SPA-SSA-BP[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 231-238,245
Authors:MENG Zhijun  LIU Huaiyu  AN Xiaofei  YIN Yanxin  JIN Chengqian  ZHANG Anqi
Affiliation:(College of Engineering,Heilongjiang Bayi Agricultural University,Daqing 163319,China;National Research Center of Intelligent Equipment for Agriculture,Beijing 100097,China;Intelligent Equipment Research Center,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China;Nanjing Research Institute of Agricultural Mechanization,Ministry of Agriculture and Rural Affairs,Nanjing 210014,China)
Abstract:In order to improve the detection accuracy of the wheat straw moisture content prediction model based on capacitance method,expand the detection range of moisture content and improve the adaptability of the model,taking wheat straw as the research object and using LCR digital bridge,the capacitance data of straw with 10.43%~25.89%moisture content were measured in the frequency range of 0.05~100 kHz,volume density range of 90.03~179.42 kg/m3 and temperature range of 25~40℃.The original data were preprocessed by using the successive projections algorithm(SPA)and principal component analysis(PCA)to extract characteristic frequencies,BP neural network was used to establish quantitative analysis models of straw moisture content,volume density,temperature and capacitance at full frequency and two characteristic frequencies respectively,and sparrow search algorithm(SSA)was introduced to optimize the BP neural network model.The experimental results showed that the prediction effect of the model based on full frequency was slightly better than that of the model based on SPA algorithm.Considering the model complexity and prediction performance,the BP neural network model(SPASSABP)optimized based on SPA algorithm and SSA algorithm was selected as the prediction model of wheat straw moisture content.The R2P,RMSEP and RPDP of prediction sets were 0.9832,0.00550 and 7.715,respectively.The model was used to predict 13 straw samples with water content ranging from 10.62%to 25.59%,and the relative error of water content prediction results was within-5.27%to 5.52%,96.8%of which was within±5%.This showed that the model had high accuracy and good robustness,and the method can provide an idea and theoretical reference for other crop straw water content prediction.
Keywords:wheat   straw   moisture content   prediction model   capacitance   sparrow search algorithm
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号