首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance of Sesbania sesban infested by the defoliating beetle Mesoplatys ochroptera in Zambia
Authors:G Sileshi  PL Mafongoya  F Kwesiga
Institution:(1) Zambia/ICRAF Agroforestry Project, Chipata, Zambia;(2) SDC-ICRAF Regional Office, Mount Pleasant, Harare, Zimbabwe
Abstract:Developing integrated pest management practices against the defoliating beetle Mesoplatys ochroptera is an important aspect of the adoption of Sesbania sesban as an improved fallow species in southern Africa. The effect of defoliation by M.ochroptera on the growth of S. sesban(provenance Kakamega) was studied during 1998–2000 at Msekera Research Station in eastern Zambia. To determine the relationship between M. ochroptera densities and degree of defoliation, potted seedlings were infested manually with different densities of larvae and adults. Infestation of two to three month old seedlings with 5–30 larvae or adults resulted in less than 20% defoliation. Infestation of seedlings with 90–150 larvae(>3 masses of eggs) led to 80–100% and 50–80% defoliation in two and three months old seedlings, respectively. The time of infestation and degree of defoliation that lead to reduction in growth and biomass were determined using simulated (manual) defoliation of one to three months old S. sesban seedlings. Manual removal of 50–100% of the foliage atone and two months after transplanting (MAP) appeared to reduce plant height, basal diameter, primary branches, leaf and wood biomass compared to that done atthree MAP. Removal of 25–50% of the sesbania foliage three months after transplanting apparently leads to overcompensation. In sesbania, compensatory growth occurred when 25–50% of the leaves were defoliated three months after transplanting. Therefore, farmers need to protect sesbania seedlings from defoliation against insects such as M. ochroptera only during the first two months after transplanting.This revised version was published online in November 2005 with corrections to the Cover Date.
Keywords:Artificial infestation  Improved fallows  Integrated pest management overcompensation  Simulated defoliation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号