摘 要: | 利用高分三号(GF-3)卫星的全极化C波段多极化合成孔径雷达数据,基于Η/Α/ 极化分解提取香农熵(SE)及其强度分量(SEI)和极化分量(SEP)、单次反射特征值相对差异度(SERD)、二次反射特征值相对差异度(DERD)、极化比(PF)、基准高度(PH)、极化不对称性(PA)和雷达植被指数(RVI)共9个特征参数,将其应用于农作物分类研究中,以支持向量机(SVM)和随机森林(RF)算法为例,初步探索了基于Η/Α/ 分解提取的这9个特征参数在GF-3数据支持下的农作物分类潜力。结果显示:单独将SERD、PH、PF、RVI和SEP参数用于2种分类方法时,分类精度较高,在82%~92%;但单独运用PA、DERD、SE和SEI的分类精度均低于80%。将分类精度较低的4个参数组合后,分类精度明显提高,在SVM和RF下的总体分类精度分别达到93.02%和92.05%,Kappa系数均大于0.8。结果表明,基于全极化GF-3数据和Η/Α/ 极化分解方法提取的9个特征参数,能很好地表征农作物的散射特征,可用于农作物分类研究。
|