首页 | 本学科首页   官方微博 | 高级检索  
     

对崔-Lawson氏种群增长模型的探讨(Ⅲ)
引用本文:马钦彦. 对崔-Lawson氏种群增长模型的探讨(Ⅲ)[J]. 北京林业大学学报, 1990, 0(2)
作者姓名:马钦彦
作者单位:北京林业大学林业资源学院
摘    要:简要述评了关于崔-Lawson模型讨论中的各种观点。作者认为崔-Lawson模型的推导过程中隐含有严重错误,不能将Michaelis-Menten方程视为崔-Lawson模型的理论基础。本文依据Smith模型提出了一个适合于描述S形增长过程的、具有可变拐点位置的方程(dN)/(dt)=a_m((N_m-N)/(N_m+kN))N。

关 键 词:种群增长模型  崔-Lawson模型  Logistic方程  S形曲线方程

A Discussion on Cui-Lawson's Model of Single Population(Ⅲ)
Ma Qinyan. A Discussion on Cui-Lawson's Model of Single Population(Ⅲ)[J]. Journal of Beijing Forestry University, 1990, 0(2)
Authors:Ma Qinyan
Affiliation:Forest Resources College
Abstract:The author suggests that Cui Qiwu and G.J.Lawson mistakenly applied the Michaelis-Menten equation to the autocatalytic reaction whenthey derived Cui-Lawson's Modelfrom theMichaelis-Menten equationBased on Smith's Model,theauthor provides an equation as follows.∞] where,am=the intrinsic rate of increase,N=the population density,Nm=the Maximun population density possible (i.e.the maximum carrying capacity),and k=the efficiency parameter of conditioned population density.This equation can be used to represent an S-shaped growth curve and can give the curve (Nt~t curve) a changeable inflection point when theparameter k is changed.The peak value of dt/dN~N curve lies in 1/2NmThe ndt/dN~N curveis convex when -1The equation changes into the exponential form when k=-1,and into a Logistic equation when k=0.
Keywords:population growth model  Logistic equation  Cui-Lawson's Model  S-shaped curve equation
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号