首页 | 本学科首页   官方微博 | 高级检索  
     

基于LiDAR数据的单木提取算法研究
引用本文:王瑞瑞1,李怡燃1,石伟2,李文静1. 基于LiDAR数据的单木提取算法研究[J]. 西北林学院学报, 2021, 36(3): 182-189. DOI: 10.3969/j.issn.1001-7461.2021.03.27
作者姓名:王瑞瑞1  李怡燃1  石伟2  李文静1
作者单位:(1.北京林业大学 精准林业北京市重点实验室,北京 100083;2.中国科学院 地理科学与资源研究所,北京 100083)
摘    要:有效了解森林生长变化信息对森林资源的保护以及生态环境的研究具有重要意义。近年来,激光雷达数据是森林清查中主要的LiDAR数据源。但是现有机载LiDAR数据单木分割算法在密集林区应用精度较低,尤其在中下层冠层单木提取精度不高,存在漏检的现象。针对以上问题,采用归一化割(normalized cut,Ncut)方法直接对激光点云数据进行初始分割,然后设定冠层的形状参数与点云数量阈值,利用全局最大值重复Ncut方法,对林区下层冠层进行探测,实现单木的精确提取。结果表明,与只利用归一化割方法提取单木结果相比,本研究方法使单木提取误判率由22.66%降至3.9%,识别率由原先的68.49%提升至86.63%,有效规避了上层冠木对下层遮盖导致的下层单木漏检情况,提高了在冠层中间层和下层树木的识别率,可为今后森林清查、森林资源管理提供分割方法的选择,也为森林分类、单木分割提供样例。

关 键 词:机载激光雷达  点云  Ncut  单木分割

 Single Wood Extraction Algorithm Based on LIDAR Data
WANG Rui-rui1,LI Yi-ran1,SHI Wei2,LI Wen-jing1.  Single Wood Extraction Algorithm Based on LIDAR Data[J]. Journal of Northwest Forestry University, 2021, 36(3): 182-189. DOI: 10.3969/j.issn.1001-7461.2021.03.27
Authors:WANG Rui-rui1  LI Yi-ran1  SHI Wei2  LI Wen-jing1
Affiliation:(1.Beijing Key Laboratory of Precision Forestry,Beijing Forestry University,Beijing 100083,China; 2.China Academy of Aerospace Systems Science and Engineering,Beijing 100083,China)
Abstract:It is of great significance to effectively understand the forest growth and change information for the protection of forest resources and the study of ecological environment.In recent years,LiDAR data have been the main sources in forest inventory.However,the accuracy of single tree segmentation algorithms based on airborne LiDAR data is low when it is applied in dense forest areas,especially in the middle and lower canopy.In order to solve the above problems,the normalized cut (Ncut) method was used to segment the laser point cloud data directly,then the shape parameters of canopy and the number of point clouds threshold were set,and the global maximum repeated NCUT method was used to detect the lower canopy of forest region,so as to realize the accurate extraction of individual trees.The results showed that,compared with the results of single tree extraction only using normalized cut method,this method reduced the error rate of single tree extraction from 22.66% to 3.9%,and improved the recognition rate from the original 68.49% to 86.63%.It effectively avoided the missing detection of lower single tree caused by the cover of upper canopy to lower canopy,and improved the recognition rate of middle canopy and lower canopy.The results can provide a choice of segmentation methods for future forest inventory and forest resource management,and also provide an example for forest classification and individual tree segmentation in Anhui Province.
Keywords:airborne LiDAR  point cloud  normalized cut  tree segmentation
本文献已被 CNKI 等数据库收录!
点击此处可从《西北林学院学报》浏览原始摘要信息
点击此处可从《西北林学院学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号