首页 | 本学科首页   官方微博 | 高级检索  
     

基于扩展卡尔曼滤波的车辆质量与道路坡度估计
引用本文:雷雨龙,付尧,刘科,曾华兵,张元侠. 基于扩展卡尔曼滤波的车辆质量与道路坡度估计[J]. 农业机械学报, 2014, 45(11): 9-14
作者姓名:雷雨龙  付尧  刘科  曾华兵  张元侠
作者单位:吉林大学;吉林大学;吉林大学;吉林大学;吉林大学
基金项目:国家高技术研究发展计划(863计划)资助项目(2012AA111712)、高等学校博士学科点专项科研基金资助项目(20120061110027)、吉林大学“985”工程资助项目和长江学者和创新团队发展计划资助项目(IRT1017)
摘    要:针对车辆自动变速器控制系统难以实时测得车辆质量与道路坡度参数这一问题,运用最优估计理论,以车辆纵向动力学模型为基础,建立系统的状态空间模型,运用前向欧拉法将过程方程离散化,进一步对非线性过程方程进行近似线性化,获得过程方程向量函数的Jacobian矩阵,实现了基于扩展卡尔曼滤波(EKF)的车辆质量及道路坡度估计算法。在Matlab/Simulink仿真平台下,进行了实车道路试验数据的离线仿真。仿真结果表明,该算法可有效估计车辆质量及道路坡度,能够满足车辆自动变速器控制系统的要求。

关 键 词:自动变速器  最优估计  扩展卡尔曼滤波  车辆质量  道路坡度
收稿时间:2013-12-26

ehicle Mass and Road Grade Estimation Based on Extended Kalman Filter
Lei Yulong,Fu Yao,Liu Ke,Zeng Huabing and Zhang Yuanxia. ehicle Mass and Road Grade Estimation Based on Extended Kalman Filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 9-14
Authors:Lei Yulong  Fu Yao  Liu Ke  Zeng Huabing  Zhang Yuanxia
Affiliation:Jilin University;Jilin University;Jilin University;Jilin University;Jilin University
Abstract:To solve the problem that vehicle mass and road grade in automatic transmission control system are difficult to measure, the state-space model of system was established based on the vehicle longitudinal dynamic model, using the optimal estimation theory. The forward Euler method was adopted for discretization of the process equation. The Jacobian of the process equation was calculated for linearization of the non-linear process function. Then, the vehicle mass and road grade estimation algorithm using extended kalman filter was developed. The simulation using road test data was carried out in Matlab/Simulink environment. The simulation results show that this algorithm could estimate vehicle mass and road grade effectively and meet the requirements of the automatic transmission control system.
Keywords:Automatic transmission Optimal estimation Extended Kalman filter Vehicle mass Road grade
本文献已被 CNKI 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号