摘 要: | 以大型哺乳动物东北虎(Panthera tigris altaica)为例,通过使用圈养东北虎监测影像数据集(ATRW),采用YOLOX算法对东北虎进行目标检测研究,检测速度为87.59张/s,0.50阈值准确率(mAP0.50)为97.32%,0.75阈值准确率(mAP0.75)为75.10%,模型总参数量为8.938×106。通过筛选无锚框算法,对选出的YOLOX算法进行轻量化、添加注意力机制及网络损失函数的优化,优化后的算法检测速度提升1.74张/s,mAP0.50准确率提升1.02个百分点,mAP0.75准确率提升1.53个百分点,模型的总参数量减少18.47%。算法改进后,在提升识别准确率的同时,有效降低了检测算法依托硬件的需求,为东北虎的野外行为研究、保护生物多样性及东北虎的野外相关数据收集提供了检测算法。
|