首页 | 本学科首页   官方微博 | 高级检索  
     

基于预见位姿信息的铰接式车辆LQR-GA路径跟踪控制
引用本文:孟宇,汪钰,顾青,白国星. 基于预见位姿信息的铰接式车辆LQR-GA路径跟踪控制[J]. 农业机械学报, 2018, 49(6): 375-384
作者姓名:孟宇  汪钰  顾青  白国星
作者单位:北京科技大学机械工程学院
基金项目:国家高技术研究发展计划(863计划)项目(2011AA060408)和国家重点研发计划项目(2016YFC0802905)
摘    要:针对铰接式车辆的特殊转向结构和行驶特性,为提高其路径跟踪控制精度和反应速度,提出了一种基于预见信息的线性二次型最优控制(Linear quadratic regulator,LQR)策略,并应用遗传算法(Genetic algorithm,GA)对状态量权重矩阵进行优化求解,获得最优LQR状态反馈控制器,实现铰接式车辆精确路径跟踪控制,由位置偏差、行驶方位偏差和曲率偏差来反映控制效果。ADAMS-Matlab/Simulink联合仿真结果:位置偏差为0.03 m,偏差误差为1.3%,行驶方位偏差误差为0.19%,曲率偏差收敛于0.003 m-1。联合仿真和试验验证结果表明,所提出的控制方法可有效提高控制精度,实现铰接式车辆的精确、稳定路径跟踪。

关 键 词:铰接式车辆  预见信息  线性二次型最优控制  遗传算法  路径跟踪
收稿时间:2017-12-15

LQR-GA Path Tracking Control of Articulated Vehicle Based on Predictive Information
MENG Yu,WANG Yu,GU Qing and BAI Guoxing. LQR-GA Path Tracking Control of Articulated Vehicle Based on Predictive Information[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(6): 375-384
Authors:MENG Yu  WANG Yu  GU Qing  BAI Guoxing
Affiliation:University of Science and Technology Beijing,University of Science and Technology Beijing,University of Science and Technology Beijing and University of Science and Technology Beijing
Abstract:Articulated vehicle is one of the utmost members of intelligent mining equipment and working under terrible conditions, which has the special steering structure and driving characteristics. In order to improve the tracking accuracy and response speed of the articulated vehicle, a linear quadratic regulator (LQR) strategy based on predictive information was proposed and a genetic algorithm (GA) was used to optimize the state quantity matrix, and the optimal LQR state feedback controller was obtained to realize the precise path tracking control of the articulated vehicle. The control result was reflected by the displacement deviation, the heading deviation and the curvature deviation. In the co-simulation (ADAMS-Matlab/Simulink) results, the displacement deviation was 0.03m, the deviation error was 1.3%, the heading deviation error was 0.19%, and the curvature deviation converged to be 0.003m-1. The co-simulation and experiment results showed that the proposed control method can effectively improve the control precision. The control strategy proposed can achieve the precise and stable path tracking of articulated vehicles, which was an alternative control method.
Keywords:articulated vehicle  predictive information  linear quadratic regulator  genetic algorithm  path tracking
本文献已被 CNKI 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号