首页 | 本学科首页   官方微博 | 高级检索  
     

基于红外光声光谱的农作物秸秆导热系数定量分析
作者姓名:黄光群  段宏伟  何金鸿  韩鲁佳
作者单位:中国农业大学工学院
基金项目:欧盟框架计划项目(690142)、教育部创新团队发展计划项目(IRT1293)和国家重点研发计划项目(2018YFD0800102)
摘    要:选用我国华北地区具有代表性的小麦、玉米、水稻秸秆样品,对比研究了偏最小二乘(PLSR)和高斯核支持向量机(RBF-SVR)分别构建单一和混合种类秸秆全波段定量分析模型的效果,探讨了红外光声光谱耦合化学计量学方法构建我国主要粮食作物秸秆导热系数定量分析模型的可行性。研究发现,小麦秸秆和水稻秸秆导热系数RBF-SVR非线性模型,以及玉米秸秆、混合种类秸秆的PLSR线性模型效果较优。进一步应用蚁群算法与上述最优建模方法相结合,构建了更加优化的小麦秸秆、玉米秸秆、水稻秸秆和混合秸秆导热系数模型,验证决定系数(R_p~2)分别为0.77、0.83、0.96和0.79,验证均方差(RMSEP)分别为0.007 8、0.015、0.005 9、0.014 W/(m·K),验证相对分析误差(RPD)分别为2.81、2.41、7.39和2.15。研究结果表明,红外光声光谱技术结合先进适用的化学计量学方法可实现我国主要粮食作物秸秆导热系数的快速定量分析,但混合秸秆模型预测精度仍需进一步提升。

关 键 词:农作物秸秆  导热系数  红外光声光谱  偏最小二乘  高斯核支持向量机  蚁群算法
收稿时间:2018-04-23
本文献已被 CNKI 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号