首页 | 本学科首页   官方微博 | 高级检索  
     

基于SGA-RF算法的农业土壤镉浓度反演研究
引用本文:王轩慧,陈建毅,郑西来,朱成,王轩力,单春芝. 基于SGA-RF算法的农业土壤镉浓度反演研究[J]. 农业机械学报, 2018, 49(10): 261-269
作者姓名:王轩慧  陈建毅  郑西来  朱成  王轩力  单春芝
作者单位:中国海洋大学海洋环境与生态教育部重点实验室;青岛农业大学理学与信息科学学院;中国联合网络通信有限公司济南软件研究院项目管理部;山西工程技术学院信息工程与自动化系;国家海洋局北海环境监测中心
基金项目:国家自然科学基金重点项目(41731280)和国家自然科学基金项目(11701310)
摘    要:在农业土壤重金属高光谱检测领域,土壤镉元素近红外光谱的高维、高冗余特性会严重影响高光谱反演模型的准确性和稳定性。为了解决上述问题,本文提出一种基于斯皮尔曼相关分析的遗传随机森林特征选择算法(SGA-RF)。该算法首先对初始特征集合使用基于斯皮尔曼相关分析的特征预选方法,筛选出大量冗余波段,保留与镉元素相关性最强的特征波段;其次在特征精选阶段,提出一种基于随机森林的适应度函数评估方法,该方法充分结合遗传算法强大的全局搜索能力和随机森林算法较高的反演能力,提高了对相似个体的区分能力,获得具有最小冗余度和最大区分性的最优特征波段子集。为了验证所提算法的有效性,选取青岛市大沽河流域具有代表性的124个土壤样品为实验对象,利用SGA-RF算法将原始2 051个波段优选至37个最具代表性的敏感波段,并与现有特征选择算法所建模型进行对比分析。试验结果表明,该特征选择方法与随机森林回归模型相结合具有较低的预测均方根误差(0.060 1),较高的相关系数(0.950 2)和预测相对分析误差(2.03)。作为应用可见/近红外光谱技术定量反演农业土壤镉浓度的重要步骤,SGA-RF算法以较少的敏感波段达到了较高的反演效果,可为监测土壤重金属污染情况提供一定的理论依据。

关 键 词:农业土壤  镉浓度  特征波长选择  斯皮尔曼等级相关分析  遗传算法  随机森林
收稿时间:2018-04-12

Inversion of Cadmium Content in Agriculture Soil Based on SGA-RF Algorithm
WANG Xuanhui,CHEN Jianyi,ZHENG Xilai,ZHU Cheng,WANG Xuanl and SHAN Chunzhi. Inversion of Cadmium Content in Agriculture Soil Based on SGA-RF Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 261-269
Authors:WANG Xuanhui  CHEN Jianyi  ZHENG Xilai  ZHU Cheng  WANG Xuanl  SHAN Chunzhi
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号