Actions of formamidines,local anesthetics,octopamine and related compounds upon the electrical activity of neurohaemal organs of the stick insect (Carausius morosus) and sense organs of fly larvae (Musca domestica; Calliphora erythrocephala) |
| |
Authors: | Michael P. Osborne |
| |
Affiliation: | Department of Physiology, The Medical School, University of Birmingham, Birmingham B15 2TJ, U.K. |
| |
Abstract: | The pesticides, chlordimeform and amitraz, and their metabolites, demethylchlordimeform, N1-(2,4-dimethylphenyl)-N-methylformamidine, and 2,4-dimethylformanilide, are effective at concentrations as low as 3 μM in raising the firing rate of endogenously active neurosecretory fibres in the isolated neurohaemal organs of Carausius morosus. Molecules such as bunamidine and cetrimide, with cationic detergent properties, produced sporadic bursting which did not elevate the overall firing rate to any great extent. Indeed, bunamidine could induce complete block of action potentials at concentrations as low as 30 μM. The local anesthetics, procaine, lidocaine, and benzocaine, do not induce block of activity at least up to a level of 1 mM. They have no effect at concentrations lower than 100 μM. Between 100 μM and 1 mM lidocaine and benzocaine produce a small increase in firing rate. Procaine produced a pronounced increase in the frequency of firing. The phenolic amines, octopamine, synephrine, and tyramine, markedly increased electrical activity. The catecholamines, dopamine, noradrenaline, and adrenaline, by contrast, only produced a weak excitation. Neither α- nor β-adrenergic blocking agents were effective in antagonizing the electrical activity induced by chlordimeform or phenolic amines until relatively high concentrations of about 1 mM were used. Chlordimeform was able to induce high-frequency bursts from sense organs associated with the epidermis and body-wall musculature in larvae of Musca domestica and Calliphora erythocephala. Octopamine did not induce any similar bursting activity in these sense organs. These results are discussed in relationship to current views on the mode of action of the N-aryl amidines. It is concluded that the excitatory effects of these compounds upon neurohaemal organs and sense organs are more likely to result from a direct action upon voltage sensitive channels of the nerve membranes, rather than by an effect mediated by interactions with octopamine receptors. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|