首页 | 本学科首页   官方微博 | 高级检索  
     

感应离子电流盐渍腌菜工艺研究
引用本文:杨哪,金亚美,马倩,吴凤凤,金征宇,徐学明. 感应离子电流盐渍腌菜工艺研究[J]. 农业机械学报, 2014, 45(10): 238-244
作者姓名:杨哪  金亚美  马倩  吴凤凤  金征宇  徐学明
作者单位:江南大学;江南大学;江南大学;江南大学;江南大学;江南大学食品科学与技术国家重点实验室
基金项目:“十二五”国家科技支撑计划资助项目(2012BAD37B01)
摘    要:利用交变磁通在盐渍液回路体系产生的感应电动势驱动Na+、Cl-形成离子电流,对4种常见腌菜进行了快速盐渍加工。选取盐渍液质量分数、处理时间和孔隙率为影响因素,考察了经过该方法浸渍处理的4种蔬菜的渗盐量并通过响应面分析建立了针对孔隙率为5.4%~8.2%的蔬菜渗盐量预测模型。结果表明:随盐渍液质量分数的增加体系磁能转换为电能的效率增高,蔬菜的渗盐量增大。对厚度为24 mm且孔隙率在6%的蔬菜,采用离子电流浸渍处理后最快可在30 min时使蔬菜的渗盐量达到5%左右,渗盐量随盐渍液质量分数和孔隙率的增大呈现增加的趋势。选取孔隙率为7.3%的茄子作为实测验证对象,通过数据拟合表明该模型能较好地预测经过离子电流浸渍处理后蔬菜的盐分含量。

关 键 词:感应离子电流  蔬菜  盐渍  孔隙率  渗盐量
收稿时间:2013-09-03

Vegetable Salting Process Based on Inductive Ion Current
Yang N,Jin Yamei,Ma Qian,Wu Fengfeng,Jin Zhengyu and Xu Xueming. Vegetable Salting Process Based on Inductive Ion Current[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(10): 238-244
Authors:Yang N  Jin Yamei  Ma Qian  Wu Fengfeng  Jin Zhengyu  Xu Xueming
Affiliation:Jiangnan University;Jiangnan University;Jiangnan University;Jiangnan University;Jiangnan University;State Key Lab of Food Science and Technology, Jiangnan University
Abstract:This study presents a new impregnation technique for brining four kinds of vegetables based on Na+ and Cl- ion current generated by the electromagnetic induction. Saline concentration, processing time and porosity were identified as main variables, which influenced pickling efficiency. Based on the principle of Box-Benhnken central composite design, response surface analysis was applied to obtain the regression model to estimate the salt content of vegetables in the porosity range from 5.4%~8.2%. The results showed that the efficiency of magnetic energy converting to electrical energy increased along with increasing the concentration of solution. With a thickness of 24 mm and a porosity of more than 6% of the vegetables tissue, the sample were immersed in saline solutions subjected to ion current under the influence of the static magnetic field for 30 min, the salt content reached 5% approximately. The regression model provided reliable prediction of the salt content in eggplant with the porosity of 7.3%.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《农业机械学报》浏览原始摘要信息
点击此处可从《农业机械学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号