首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stability behavior of soil colloidal suspensions in relation to sequential reduction of soils
Authors:Zhonghai Lil  Yukiya Horikawa
Institution:1. Department of Non-timber Forestry , Central South Forestry University , Hunan , China;2. Faculty of Agriculture , Kochi University , Nankoku , Japan;3. 624-3-401, Suehiro-Onsen-cho, Tottori , Japan
Abstract:The cause of the decrease in the Fe2+ concentration of the soil solution in the later period of soil waterlogging was investigated. After 7-d incubation of the soil solutions separated from previously waterlogged soils (PWdS), a greyish precipitate (PPT) was observed in the soil solutions. The color of the PPT became reddish brown after separation from the solutions and freeze-drying. The PPT observed in 14-d-PWdS contained 352.6 g Fe kg-1, 62.5 g C kg-1, 22.6 g P kg-1, 11.3 g Si kg-1, 9.9 g N kg-1, 0.7 g Al kg-1 and a trace amount of Mn. However, Ca, Mg, K, and Na could not be detected. It was concluded that the separated PPT was dominated by amorphous ferric hydroxide based on the chemical analysis, broad IR absorption band at 585 cm-1 and exothermic peak at 301°C. The data of chemical analysis and the characteristic IR bands of the PPT suggested that organic substances and presumably aluminosilicate anion were adsorbed onto the freshly-formed ferric hydroxide. The dominant phase of the greyish PPT in the reductive soil solution was considered to be ferrous PPT and was assumed to consist mainly of carbonate and/or hydroxide, and concomitantly of phosphate. The formation of the ferrous PPT in the soil solution in the later period of soil waterlogging was considered to (i) cause the decrease of concentration of Fe2+ ion and of other divalent cations such as Ca2+ due to the re-adsorption of Ca2+ on soil clays through the cation exchange reaction with Fe2+ ion, and consequently (ii) enhance the dispersion of the soil colloidal suspension.
Keywords:clay dispersion  ferric hydroxide  ferrous carbonate  ferrous hydroxide  soil reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号