首页 | 本学科首页   官方微博 | 高级检索  
     

基于机器视觉的棉花群体叶绿素监测
引用本文:王方永,李少昆,王克如,隋学艳,柏军华,陈兵,刘国庆,谭海珍. 基于机器视觉的棉花群体叶绿素监测[J]. 作物学报, 2007, 33(12): 2041-2046
作者姓名:王方永  李少昆  王克如  隋学艳  柏军华  陈兵  刘国庆  谭海珍
作者单位:1 新疆兵团绿洲生态农业重点开放实验室,新疆石河子832003;2 中国农业科学院作物科学研究所,北京100081;3 山东省农业可持续发展研究所,山东济南250100
基金项目:国家自然科学基金;国家高技术研究发展计划(863计划)
摘    要:研究了利用机器视觉技术快速获取棉花群体叶绿素信息的方法,以期获得预测性高的颜色特征参数。结果表明,RGB颜色系统的G-R、(G-R)/(G+R)、r与g的组合值和棉花功能叶叶绿素含量、群体绿色指数呈极显著相关,而且拟合度较高;HIS颜色系统的Hue值和棉花功能叶叶绿素含量、群体绿色指数之间也极显著相关。对筛选出的两组模型进行检验,预测精度在84.07%~93.04%之间,推荐预测精度最高的G-R参数作为获取棉花群体叶绿素信息的最佳颜色指标。G-R预测叶绿素含量和群体绿色指数的模型分别为y=-1.3008+0.2125(G-R)-0.0038(G-R)2(R2=0.8669**)和y=-0.9726+0.1227 (G-R)-0.0016(G-R)2(R2=0.7487**)。

关 键 词:棉花群体  机器视觉  叶绿素  RGB  HIS  图像覆盖度
收稿时间:2007-02-08
修稿时间:2007-05-03

Obtaining Information of Cotton Population Chlorophyll by Using Machine Vision Technology
WANG Fang-Yong,LI Shao-Kun,WANG Ke-Ru,SUI Xue-Yan,BAI Jun-Hua,CHEN Bing,LIU Guo-Qing,TAN Hai-Zhen. Obtaining Information of Cotton Population Chlorophyll by Using Machine Vision Technology[J]. Acta Agronomica Sinica, 2007, 33(12): 2041-2046
Authors:WANG Fang-Yong  LI Shao-Kun  WANG Ke-Ru  SUI Xue-Yan  BAI Jun-Hua  CHEN Bing  LIU Guo-Qing  TAN Hai-Zhen
Affiliation:1.Key Laboratory of Oasis Ecology Agriculture of Xinjiang Construction Crops, Shihezi 832003, Xinjiang;2.Institute of Crop Sciences,Chinese Academy of Agriculture Sciences, Beijing 100081;3.Institute of Agriculture Sustainable Development of Shandong, Jinan 250100, Shandong, China
Abstract:Machine vision have been successful applied to monitor crop morphological and physiological status,such as leaf area index,nitrogen content,chlorophyll content and so on.The trials was conducted from 2004 to 2006 at the experiment station of Shehezi University located in Shihezi,Xingjiang Province to monitor cotton canopy chlorophyll information under field conditions by processing cotton population digital image,which is one measurement method with advantages of convenient,real time,quick and nondestructive.In order to obtain uniform cotton canopy digital images,the assistant device was used.In the field,the cotton canopy images were taken by a digital photo camera(OLYMPUS) at the squaring stage,early flowering stage,full flowering stage,peak boll stage and opening boll stage,respectively.The color characteristics of cotton population images were extracted with the image processing software developed by our lab.The correlation between color parameters of cotton canopy digital image and chlorophyll content of cotton functional leaf was analyzed.The results showed that the correlation of the color characteristics such as G-R,(G-R)/(G R), r/g,g/r,and g-r in the RGB color system,and Hue in the HIS color system with chlorophyll content of functional leaf was significant at P<0.01.There was also a significant correlation between the population greenness index(PGI) and color parameter.The chlorophyll predicted models were established.The tested results about the regression models suggested that G-R was the best parameter to monitor cotton population chlorophyll information.The relative error of chlorophyll content and PGI estimations was about 6.96% and 11.60%,and RMSE was 0.1138 and 0.1643.The chlorophyll content predicted model was y=-1.3008 0.2125(G-R)-0.0038(G-R)2(R2=0.8669**),and PGI predict model was y=-0.9726 0.1227(G-R)-0.0016(G-R)2(R2=0.7487**).
Keywords:RGB  HIS
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《作物学报》浏览原始摘要信息
点击此处可从《作物学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号