首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimal coupling combinations between irrigation frequency and rate for drip-irrigated maize grown on sandy soil
Authors:Salah E El-Hendawy  Urs Schmidhalter
Institution:a Agronomy Department, Faculty of Agriculture, Suez Canal University, 41522 Ismailia, Egypt
b Department of Plant Sciences, Technische Universität München, Am Hochanger 2, D-85350 Freising-Weihenstephan, Germany
Abstract:This study was conducted over 2 years (2007 and 2008) to establish the optimal combinations between irrigation frequency and rate for drip-irrigated maize using water production functions and water use-yield relationships. A field experiment was conducted using a randomized complete block split plot design with four irrigation frequencies (F1, F2, F3 and F4, irrigation events once every 1, 2, 3 or 4 days, respectively) and three drip irrigation rates (I1: 1.00, I2: 0.80, and I3: 0.60 of the estimated evapotranspiration, ET) as the main and split plots, respectively. Our results show that yield variables and water use efficiencies (WUEs) increased with increasing irrigation frequency and rate, with non-significant differences between F1 and F2 in yield variables and between I1 and I2 in WUEs. Moreover, the combination between various irrigation frequencies and rates had an important effect on yield variables and WUEs, with the highest values being found for F1I2 and F2I1 and the lowest for F3I3 and F4I3. The F1I3 treatment had grain yield and yield components values similar to those obtained for the F3I2 and F4I1 treatments and WUEs values similar to those obtained for the F2I1 and F2I2 treatments. Seasonal yield response factors (ky) were 1.81 and 1.86 in 2007 and 2008, respectively. Production functions of yield versus seasonal crop ET were linear for all combinations of irrigation frequency and rate and for all irrigation frequency treatments with the exception of the F1 treatment, which instead showed a second order relationship. The relationship between WUE and grain yield was best represented by a power equation. In conclusion, we identified the optimal coupling combinations between irrigation frequency and water application rate to achieve the maximum yield and WUEs under either sufficient (F2I1) or limited irrigation (F1I3) water supplies.
Keywords:Deficit irrigation  Evapotranspiration  Grain yield  Maize  Sandy soil  Seasonal yield response factor (ky)  Water use efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号