首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The response of plant growth and leaf gas exchange to the speed of lamp movement in a greenhouse
Authors:Theo J Blom  Youbin Zheng
Institution:1. Department of Plant Agriculture, University of Guelph, Guelph, Ontario N1G 2W1, cityCanada;2. Controlled Environment Systems Research Facility, Department of Environmental Biology, University of Guelph, Ontario N1G 2W1, cityCanada
Abstract:High-pressure sodium (HPS) light supplementation during the low-light months has become quite common for high-light requiring crops at latitudes above 45°. Most common systems have fixed installations, while movable systems have been tried with various results in greenhouses. The concept is that fewer lamps are used on a track system, and that light intensity varies over time. In two trials, we determined whether the speed of the HPS lamp movement had any effect on leaf CO2 exchange rate, growth and developments of various plants species. Plants (chrysanthemum, petunia, rose and tomato) were grown in a greenhouse supplemented with HPS lamps which moved at various speeds (0, 2, 8 and 20 mm s−1) between 06:00 and 24:00 h daily for about 6–7 weeks. One trial started at the end of November and one started at the end of January. The light sum from the lamps were 0.212 ± 0.004 mol m−2 h−1 at bench level, and the supplemental lighting represented 55 and 35% of the total light received by the plants for the two trial dates, respectively. The growth (dry matter) was reduced for tomato only when grown under moving lights compared to those grown under the stationary system, while plant height was not affected. Light saturated CO2 exchange rate on the youngest fully developed leaves increased with lamp speed for petunia and tomato, but not for chrysanthemums, while apparent quantum yield was not affected by lamp speed for any species. In situ measurements of net CO2 exchange rate (NCER) with supplemental lighting only, showed that NCER decreased exponentially when lamp speed increased from 0 to 20 mm s−1.
Keywords:Chlorophyll content  Chlorophyll fluorescence  Pulse lighting  Photosynthesis  Tomato  Petunia  Chrysanthemum
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号