首页 | 本学科首页   官方微博 | 高级检索  
     

基于Landsat TM数据的大兴安岭盘古林场森林健康评价
引用本文:董灵波,高小龙,朱宇,刘兆刚. 基于Landsat TM数据的大兴安岭盘古林场森林健康评价[J]. 北京林业大学学报, 2021, 43(4): 87-99. DOI: 10.12171/j.1000-1522.20200067
作者姓名:董灵波  高小龙  朱宇  刘兆刚
作者单位:1.东北林业大学林学院,森林生态系统可持续经营教育部重点实验室,黑龙江 哈尔滨 150040
基金项目:国家重点研发计划课题;国家自然科学基金项目
摘    要:[目的]健康评价是实施森林资源健康经营的前提和基础,但现有研究多从单一尺度开展,未充分考虑森林生态系统的层级结构.为此,该文以林木冠层特征为基础,结合Landsat TM数据和统计学方法实现森林健康评价的多尺度转换,为我国森林健康经营提供理论依据和技术支撑.[方法]以大兴安岭盘古林场50块固定样地单木健康调查数据为基础...

关 键 词:TM数据  森林健康  度量误差模型  空间分布  大兴安岭
收稿时间:2020-03-10

Forest health assessment of Pangu Forest Farm based on Landsat TM in Great Xing'an Mountains of northeastern China
Dong Lingbo,Gao Xiaolong,Zhu Yu,Liu Zhaogang. Forest health assessment of Pangu Forest Farm based on Landsat TM in Great Xing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 87-99. DOI: 10.12171/j.1000-1522.20200067
Authors:Dong Lingbo  Gao Xiaolong  Zhu Yu  Liu Zhaogang
Affiliation:1.School of Forestry, Key Laboratory of Sustainable Forest Ecosystem Management of Ministry of Education, Northeast Forestry University, Harbin 150040, Heilongjiang, China2.Faculty of Life Science and Technology, National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
Abstract:[Objective]Health assessment is one of the important prerequisites for implementing sustainable forest management,however most of the previous studies were carried out only on a single scale,without considering the hierarchical structures of forest ecosystems.Therefore,the present study focused on the canopy characteristics,and studied the method of scale transformation for the forest health assessment by the remote sensing and statistical method,which can provide theoretical support and guidance for the forest health management in China.[Method]Based on the datasets of individual-tree health survey from 50 sample plots in Pangu Forest Farm,the health assessment model of individual-tree was constructed using the entropy-AHP comprehensive index method.Five commonly used statistical indicators,namely mean value(Hm),standard deviation(Hstd),coefficient of variation(Hcv),skewness(Hpd)and kurtosis(Hfd),were summarized for each sample plot based on the health assessment results from tree-level.Then,a comprehensive forest health assessment model of regional-level was developed by combining the Landsat TM and topographic data using the nonlinear error-in-variable simultaneous equations model.Finally,the forest health status and their spatial distribution characteristics of Pangu Forest Farm were quantitatively analyzed.[Result]The sample plot survey datasets indicated that the average health score of individual-tree in Pangu Forest Farm was 0.6638±0.0912,belonging to the sub-health level,among which the proportion of sub-healthy trees was the highest(79.43%);the differences of the health grades among different tree species were significant,namely Picea asperata>Betula platyphylla>Larix gmelinii>Populus davidiana>Pinus sylvestris;the statistical values of Hm,Hstd,Hcv,Hpd and Hfd,for the health scores at stand-level were 0.6633,0.0841,12.84,-0.6076 and 0.8460,respectively,indicating that approximately 78.43%of the total forests had a significant left-pointed normal distribution;the remote sensing inversion results showed that the regional-level health score Hm was about 0.6194±0.0543,in which topographic(DEM),vegetation index(RVI,DVI,EVI and Green)and original bands(B1,B3)were the key driving factors.The estimated accuracy of the constructed NESEM model was all larger than 75%,which could meet the needs of forest health assessment;in addition,a significant pattern that gradually decreased from north to south was observed for the mean forest health scores,in which the higher scores of Hm were usually concentrated in the convenient transportation areas,such as the areas of residential and forest roads.[Conclusion]The forests in study area were mainly sub-health,which may be urgent to carry out scientific health management.Meanwhile,the multi-scale transformation method presented in the study,namely combining the canopy characteristics with the results of forest health assessments by remote sensing and statistical methods,could achieve the scale conversions of forest health assessments among different levels very well.
Keywords:TM data  forest health  error-in-variable model  spatial distribution  Great Xing’an Mountains
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京林业大学学报》浏览原始摘要信息
点击此处可从《北京林业大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号