首页 | 本学科首页   官方微博 | 高级检索  
     检索      


RETRACTED ARTICLE: The bioremediation of metolachlor in soil using Rhodospirillum rubrum after wastewater treatment
Authors:Wu  Pan  Shi  Jiarong  Zhang  Ying  Wang  Yanling  Ou  Xiaoxia  Han  Ziqiao  Wu  Xiaozhen  Zhao  Rou  Yang  Weiguang
Institution:1.School of Environment and Resources, Dalian Minzu University, Dalian, 116024, China
;2.School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
;3.Department of Anesthesiology, the third affiliated hospital of SunYat-Sen University, Guangzhou, 510630, China
;
Abstract:Purpose

Reliable and effective techniques for removing contaminants from soil are highly desirable. However, metolachlor residue bioremediation and soil fertility improvement by Rhodospirillum rubrum (R. rubrum) in effluent after wastewater treatment have not yet been investigated. The aims of this study were to investigate the feasibility of bioremediation of metolachlor residues in soil and soil fertility improvement by R. rubrum in effluent and to explain the mechanism that R. rubrum in effluent was induced to express the regulatory gene.

Materials and methods

Soybean processing wastewater was obtained from Harbin Soybean Products Machining Factory. Soil samples were the surface soil (0–30 cm) from campus (1.77 g/kg total N, 4.15 g/kg total P, 1.58 g/kg total K, 17 g/kg SOM, 0.07 g/kg SMBC). Cytochrome P450 monooxygenase regulatory gene, MAPKKKs gene, was measured by RT-PCR.

Results and discussion

Compared to control treatment, metolachlor was removed efficiently and soil fertility was remediated by effluent containing R. rubrum. The removal in concentrations reached 2.97 mg/L (99%). Soil organic matter (SOM) and SMBC were enhanced 42 times. Molecular analysis revealed that metolachlor induced cpm gene expression to synthesize cytochrome P450 monooxygenase through activating MAPKKKs gene in MAPK signal transduction pathway.

Conclusions

Bioremediation of metolachlor in soil and improvement of soil fertility using R. rubrum in effluent were feasible. Metolachlor, as environmental pressure, induced cpm gene expression to synthesize cytochrome P450 monooxygenase and to remove metolachlor through activating MAPKKKs, MAPKKs, MAPKs genes in MAPK signal transduction pathway.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号