首页 | 本学科首页   官方微博 | 高级检索  
     


Lime application to reduce phosphorus release in different textured intact and small repacked soil columns
Authors:Eslamian  Faezeh  Qi  Zhiming  Tate  Michael J.  Romaniuk  Nikolas
Affiliation:1.Department of Bioresource Engineering, McGill University, Macdonald Campus, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, QC, H9X 3V9, Canada
;2.Graymont, 21880 West State Route 163, Genoa, OH, 43430, USA
;3.Graymont, 4311 12th St NE, Calgary, Alberta, T2E 4P9, Canada
;
Abstract:Purpose

Phosphorus (P) losses from agricultural fields through leaching are the main contributors to eutrophication of lakes and rivers in North America. Adoption of P-retaining strategies is essential to improve the environmental quality of water bodies. The main objective of this study is to evaluate lime as a soil amendment in reducing phosphorus concentration in the leachate from three common soil textures with neutral to alkaline pH.

Materials and methods

Phosphorus leaching from undisturbed soil columns (10 cm in diameter and 20 cm deep) as well as small repacked columns was investigated and compared in this study. Lime (high calcium hydrated lime) at the rate of 1% by air-dried soil mass was applied to the topsoil of the columns. Both sets of experiments followed a full factorial design with two factors of soil texture at three levels (sandy loam, loam, and clay loam) and treatment at two levels (control and limed) with three replicates. Scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy was performed on the control and limed soil samples to confirm the formation of calcium phosphate compounds.

Results and discussions

For both intact and repacked columns, dissolved reactive phosphorus (DRP) concentrations in the leachates from limed sandy loam and limed loam soil columns was significantly reduced, while DRP in the limed clay loam column leachates was not changed. Elemental mapping demonstrated that in limed sandy loam and loam soils, the calcium loadings on the soil surface were always linked with phosphorus. The formation of calcium phosphate compounds and the increased phosphate adsorption on the soil surface through Ca bridging could be the two main phosphorus-lime retention mechanisms. Total dissolved phosphorus (TDP) in the leachates of limed loam and limed clay loam indoor intact and repacked columns was reduced, while there was no change in that of the sandy loam soil. In finer textured soils, lime can increase TDP retention through the immobilization of organic phosphates.

Conclusions

The impact of lime application on DRP and TDP varied with the soil texture. The lime-induced reduction in the DRP and TDP was variable between the intact and repacked columns demonstrating the importance of soil structure on phosphorus and lime interactions in the soil. Overall, lime application at the studied rate can be considered a promising soil amendment in mitigating phosphorus loss from non-calcareous neutral to alkaline soils.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号