首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Polyelectrolyte multilayer coated nanofibrous mats: Controlled surface morphology and cell culture
Authors:Jong Hoon Park  Byoung Suhk Kim  Hyun Jin Tae  In Shik Kim  Hak Yong Kim  Myung Seob Khi
Institution:3. Department of Textile Engineering, Chonbuk National University, Jeonju, 561-756, Korea
1. Faculty of Textile Science and Technology, Shinshu University, Nagano, 386-8567, Japan
2. College of Veterinary Medicine, Chonbuk National University, Jeonju, 561-756, Korea
Abstract:We reported the controlled surface morphologies and the cell culture of polyelectrolyte multilayer coated nylon 6 fibrous mats with different number of layers. Polyelectrolyte multilayer coated nylon 6 fibers were successfully prepared by an alternative deposition of alginic acid sodium salt and chitosan via a Layer-by-Layer (LbL) electrostatic self-assembly. The surface morphology, stiffness, and hydrophilicity of polyelectrolyte multilayer coated nylon 6 fibrous mats could be finely tuned by regulating the number of polyelectrolyte nanocoating. It was observed that the morphology of polyelectrolyte multilayer coated nylon 6 fibers was uniform and smooth, indicating a dense and harder nanocoating of polyelectrolytes onto nylon 6 fibers. Compared to pure nylon 6 fibrous mat (tensile strength ~10.6±1 MPa), the tensile strength of polyelectrolyte coated nylon 6 fibrous mats was largely increased to 35.2±2 MPa for 5 bilayers coated fiber mats. In addition, it was found that at an initial stage after 1 day of cell culturing, the electrospun nylon 6 fibrous mats coated with 5 bilayer of alginic acid and chitosan show the highest cell affinity (good adhesion), while the electrospun nylon 6 fibrous mats coated with 10 bilayer show the lowest cell affinity. After cell seeding for 3 days, it was observed that rate of proliferation is enhanced by increasing the number of bilayer up to 3 bilayers (good proliferation), and then drastically decreased with further increasing the number of bilayer.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号