首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基神经网络优化汽车除霜性能研究
引用本文:刘天宏,范平清. 基于径向基神经网络优化汽车除霜性能研究[J]. 农业装备与车辆工程, 2020, 58(5): 106-110
作者姓名:刘天宏  范平清
作者单位:201620 上海市 上海工程技术大学机械与汽车工程学院;201620 上海市 上海工程技术大学机械与汽车工程学院
摘    要:为了提高汽车的除霜性能,在出风口处增加横格栅,然后选择出风口的长度尺寸和出风角度作为设计变量,使用径向基函数神经网络找到设计变量的最优组合方案。经过优化后,前挡风玻璃上的风速分配更合理,并消灭了除霜死角,在20 min时,前挡风玻璃玻璃的霜层基本完全除净,汽车空调的除霜性能得到明显的提高。

关 键 词:CFD  除霜分析  数值模拟  优化  径向基神经网络

Optimization of Automotive Defrosting Performance Based on Radial Basis Function Neural Network
Liu Tianhong,Fan Pingqing. Optimization of Automotive Defrosting Performance Based on Radial Basis Function Neural Network[J]. Agricultural Equipment & Vehicle Engineering, 2020, 58(5): 106-110
Authors:Liu Tianhong  Fan Pingqing
Affiliation:(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
Abstract:In order to improve the defrosting performance of the automobile,the horizontal grilles are added at the outlets.Then the airflow jet angle and the length of the air conditioning outlets are selected as design variables,and the RBFNN(radial basis function neural network) is used to find the optimal combination scheme of design variables.After optimization,the wind speed distribution on the front windshield is more reasonable,and the defrost dead comers are eliminated.The frost layer is completely removed at 20 min,the defrosting performance of the automobile air conditioner is obviously improved.
Keywords:CFD  defrosting performance  numerical simulation  optimization  RBFNN
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号