首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Use of microcalorimetry to study microbial activity during the transition from oxic to anoxic conditions
Authors:Torsten Vor  Jens Dyckmans  Heiner Flessa  Friedrich Beese
Institution:1.Institute of Soil Science and Forest Nutrition, University of G?ttingen, Büsgenweg 2, 37077 G?ttingen, Germany,
Abstract:Microbial heat production is a nonspecific measure for microbial activity irrespective of O2 availability in soils. In a series of long-term batch microcalorimeter experiments with closed ampoules, we examined the microbial activity in glucose-amended soil aggregates from different soil depths of a clay forest soil during the transition from aerobic to anaerobic conditions. Furthermore, the influence of the soil aggregate size on the long-term metabolic heat production was examined. Heat output curves showed a distinct pattern for soil samples from different soil depths and aggregate sizes and led to the following conclusions: 1. Microbial biomass and microbial activity strongly decreased with increasing soil depth as well as increasing soil aggregate size despite relatively constant organic C concentrations. 2. The transition from aerobic to anaerobic conditions led to a considerable drop in microbial activity. However, based on the energy balance, 10-26% of the heat production during the aerobic phase is attributable to anoxic or partly anoxic metabolism. 3. After O2 exhaustion, a lag phase of low but constant heat output was observed, followed by a peak of anaerobic metabolic activity. Heat production during the lag phase was hypothesised to be an indicator for the biomass of facultatively anaerobic microorganisms in the soil.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号