首页 | 本学科首页   官方微博 | 高级检索  
     


A laboratory study of the effect of time and temperature on the decline in Olsen P following phosphate addition to calcareous soils
Authors:S. Javid  D.L. Rowell
Affiliation:Soil Chemistry Section Ayub, Agricultural Research Institute, Faisalabad, Pakistan;Department of Soil Science, The University of Reading, Reading, RG6 6DW, UK
Abstract:Abstract. The effects of time and temperature on the changes in Olsen P after phosphate application were studied in 13 calcareous soils from Pakistan, an Oxisol from Colombia and an Inceptisol from England. The phosphate sorption reactions were monitored in two stages. The short-term reaction (30 min shaking with added phosphate in the presence of the Olsen bicarbonate solution) showed that over this time the nature of the sorbing material and number of available sites for P adsorption were important but temperature was not. The extent of the short-term sorption was not related to the amount of calcium carbonate. In the long-term reaction (incubating the soils with phosphate at 10, 25 and 45 °C for one year) the amount of Olsen P decreased with time following a power relationship. Increased temperature increased the rate of reaction, following the Arrhenius principle i.e. Q10⊃ 3 (activation energy 83 kJ mol–1). The effects of time and temperature were well described by a modified power equation Y = a (1 + fTt ) -b , where Y is the amount of Olsen P extracted after time t , a is the Olsen P value after the short-term reaction (the initial value), fT is the ratio of the rate constants at any two temperatures and b is a coefficient which represents the loss in extractability with time. On the basis of the initial Olsen P values and subsequent Olsen P values at different times and temperatures a unified decay curve Y/a = (1 + t )–0.20 was developed where the initial Olsen P values are normalized to 1. The parameters of this equation allow, with limitations, the prediction of changes in Olsen P in these soils if the initial Olsen P value of the soil is known.
Keywords:Phosphate    availability    calcareous soils    time    temperature    equations.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号