首页 | 本学科首页   官方微博 | 高级检索  
     

The Trichoderma-plant interaction is mediated by avirulence proteins produced by this fungus
引用本文:Ruocco M  Lanzuise S  Woo S L  Ambrosino P  Marra R  Turrà D  Gigante S  Formisno E  Scala F  Kip N  P J G M de Wit  Lorito M. The Trichoderma-plant interaction is mediated by avirulence proteins produced by this fungus[J]. 浙江大学学报(农业与生命科学版), 2004, 30(4): 422-422
作者姓名:Ruocco M  Lanzuise S  Woo S L  Ambrosino P  Marra R  Turrà D  Gigante S  Formisno E  Scala F  Kip N  P J G M de Wit  Lorito M
作者单位:Dip.Arboricoltura,BotanicaePatologiaVegetale-Sez.PatologiaVegetale,Lab.diLottaBiologica,UniversitfidiNapoli"FedericoII",andCNR-IPP,ViaUniversita100,Portici(NA)80055Italy
摘    要:The molecular basis of Trichoderma -plant interaction is very complex and still not completely understood. The colonization of the root system by rhizosphere competent strains of Trichoderma results in increased development of root/aerial systems, in improved yields and in plant disease control. Other beneficial effects, such as the induction of plant systemic resistance, have also been described. To understand the mechanisms involved we are using different approaches, including the making…

关 键 词:无毒力蛋白质  真菌  木霉属  生产  植物
文章编号:1008-9209(2004)04-0422-01

The Trichoderma-plant interaction is mediated by avirulence proteins produced by this fungus
Ruocco M,Lanzuise S,Woo S L,Ambrosino P,Marra R,Turrà D,Gigante S,Formisno E,Scala F,Kip N,P J G M de Wit,Lorito M. The Trichoderma-plant interaction is mediated by avirulence proteins produced by this fungus[J]. Journal of Zhejiang University(Agriculture & Life Sciences), 2004, 30(4): 422-422
Authors:Ruocco M  Lanzuise S  Woo S L  Ambrosino P  Marra R  Turrà D  Gigante S  Formisno E  Scala F  Kip N  P J G M de Wit  Lorito M
Abstract:The molecular basis of Trichoderma -plant interaction is very complex and still not completely understood. The colonization of the root system by rhizosphere competent strains of Trichoderma results in increased development of root/aerial systems, in improved yields and in plant disease control.Other beneficial effects, such as the induction of plant systemic resistance, have also been described.To understand the mechanisms involved we are using different approaches, including the making of transformants expressing genes that encode for compounds able to affect plant response to pathogens.Trichoderma transformants carrying the avirulence gene Avr4 from Cladosporium fulvum under the control of constitutive and inducible promoters were obtained and tested on tomato plants having the Cf4 resistance gene. Necrosis and suberification zones, similar to the symptoms appearing during Cladosporium-tomato interaction, were found when the roots of the Cf4 plants were treated with Avr4-Trichoderma. This demonstrates that selected Trichoderma strains are able to transfer to the plant molecules that may deeply affect metabolism, disease resistance etc. Therefore, these beneficial fungi can be regarded as biotechnological tools to provide a variety of crops with useful compounds.Moreover, in in vitro competition assays the transformants were found to be more effective as antagonists against Alternaria alternata than the wild type. Trichoderma sends a variety of biochemical signals to the plants including avirulence molecules; therefore the presence of avr-like proteins in the fungus proteome was investigated. Proteome analysis has permitted us to isolate and sequence many proteins potentially having this function. From the extraeellular protein extracts, we have purified and sequenced a protein with structural characteristics similar to Avr4 of C. fulvum.The protein, Hytra1, was found to be a hydrophobin with chitin binding activity, the typical 8cysteine residues, and 4 disulfide bridges. Infiltrations of the extracellular protein fractions containing Hytral resulted in a strong HR reaction on tobacco and tomato leaves, and induction of a novel phytoalexin.
Keywords:systemic resistance  Avr4  biochemical signals
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《浙江大学学报(农业与生命科学版)》浏览原始摘要信息
点击此处可从《浙江大学学报(农业与生命科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号