首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Perspective on Carbon Fiber Woven Fabric Electrodes for Structural Batteries
Authors:Mi Young Park  Joo-Hyung Kim  Do Kyung Kim  Chun Gon Kim
Institution:1.Department of Aerospace Engineering, School of Mechanical and Aerospace Engineering,KAIST,Daejeon,Korea;2.Department of Materials Science and Engineering,KAIST,Daejeon,Korea
Abstract:The purpose of this work is to explore effective means of fabricating nanostructure-deposited continuous woven carbon fabric and to investigate the feasibility of using this material in structural battery applications. In order to prove this concept, two types of nanostructured carbon fabric electrodes – one with vertically-aligned carbon nanotubes (VACNTs) formed directly on carbon fabric utilizing iron (Fe) nanoparticles and Al buffer layers, the other with the same VACNTs on a chemical vapor-deposited graphene surface utilizing Ni seed layers on the carbon fabric – were fabricated to investigate material electrical performances as battery electrodes. The reversible specific capacity of 250 mAh/g on average at C/20 with good cyclic retention in these three all-carbon electrodes, including pristine carbon fabric, suggests a promising structural battery electrode for low-current battery applications. Even though the capacity of VACNT-grafted carbon fabrics was limited due to poor wetting of the VACNT forest with electrolyte caused by the lack of functionalization of the VACNT, their excellent cyclic performances and galvanostatic curves support the idea that the carbon nanotube and carbon fabric combination can be utilized in battery applications. However, pristine-carbon fabric is still a good candidate for battery applications because of its simplicity of mass production.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号