首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Systematically Investigated the Influences of Permeable Pavement Materials on the Water Quality of Runoff: Batch and Column Experiments
Authors:Ziyang Zhang  Zhifei Li  Xiaoran Zhang  Dongqing Liu  Zhuorong Li  Haiyan Li
Institution:1.Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control,Beijing University of Civil Engineering and Architecture,Beijing,People’s Republic of China;2.Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education,Beijing University of Civil Engineering and Architecture,Beijing,People’s Republic of China
Abstract:To investigate the effect of permeable pavement surface materials (PPSMs) on the influences of pollutant removal in urban storm runoff, six commonly used PPSMs (porous asphalt, porous concrete, cement brick, ceramic brick, sand base brick, and shale brick) were selected and the research was carried out by batch and column experiments. Results indicated that in batch experiments, except for the shale brick, most of the PPSM will release different pollutants continuously with the contact time increasing. Compared with other materials, porous asphalt and ceramic brick could increase the concentration of pollutants in the runoff greatly. With the contact time increased to 48 h, the concentration of NO3-N and TN increased to 13.0 and 23.1 mg/L for ceramic brick and 13.3 and 32.3 mg/L for porous asphalt, respectively. This is mainly due to the artificial activity that accelerates the wear of the PPSM. Furthermore, results showed that PPSM could eliminate pollutants and influenced the removal efficiency greatly in column experiments. Most PPSMs have a noticeable purification effect on different pollutants, among them the purification effect of porous asphalt is the best. The concentrations of COD, NH3-N, and TN are 139.6, 1.32, and 7.79 mg/L in the effluent, respectively. These results may be attributed to the relatively stable environment in column experiments which is more suitable for the removal of pollutants. This study could offer new insight into the transformation of pollutants in damaged PPSM and provide useful guidelines for the better design of permeable pavement system.
Graphical abstract Graphical abstract
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号