首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nitrous oxide emission from feedlot manure and green waste compost applied to Vertisols
Authors:Ram C Dalal  Iain R Gibson  Neal W Menzies
Institution:(1) Department of Environment and Resource Management, 80 Meiers Road, Indooroopilly, QLD, 4068, Australia;(2) School of Land, Crop and Food Science, The University of Queensland, Brisbane, 4072, Australia
Abstract:Application of feedlot manure (FLM) to cropping and grazing soils could provide a valuable N nutrient resource. However, because of its high but variable N concentration, FLM has the potential for environmental pollution of water bodies and N2O emission to the atmosphere. As a potential management tool, we utilised the low-nutrient green waste compost (GWC) to assess its effectiveness in regulating N release and the amount of N2O emission from two Vertisols when both FLM and GWC were applied together. Cumulative soil N2O emission over 32 weeks at 24°C and field capacity (70% water-filled pore space) for a black Vertisol (Udic Paleustert) was 45 mg N2O m−2 from unamended soil. This increased to 274 mg N2O m−2 when FLM was applied at 1 kg m−2 and to 403 mg N2O m−2 at 2 kg m−2. In contrast, the emissions of 60 mg N2O m−2 when the soil was amended with GWC 1 kg m−2 and 48 mg N2O m−2 at 2 kg m−2 were not significantly greater than the unamended soil. Emission from a mixture of FLM and GWC applied in equal amounts (0.5 kg m−2) was 106 mg N2O m−2 and FLM applied at 0.5 kg m−2 and GWC at 1.5 kg GWC m−2 was 117 mg N2O m−2. Although cumulative N2O emissions from an unamended grey Vertisol (Typic Chromustert) were only slightly higher than black Vertisol (57 mg N2O m−2), FLM application at 1 kg m−2 increased N2O emissions by 14 times (792 mg N2O m−2) and at 2 kg m−2 application by 22 times (1260 mg N2O m-2). Application of GWC did not significantly increase N2O emission (99 mg N2O m−2 at 1 kg m−2 and 65 mg N2O m−2 at 2 kg m−2) above the unamended soil. As observed for the black Vertisol, a mixture of FLM (0.5 kg m−2) and GWC (0.5 or 1.5 kg m−2) reduced N2O emission by >50% of that from the FLM alone, most likely by reducing the amount of mineral N (NH4+–N and NO3–N) in the soil, as mineral N in soil and the N2O emission were closely correlated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号