首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of salt and water movement and estimation of water productivity of rice crop irrigated with saline water
Authors:V Phogat  A K Yadav  R S Malik  Sanjay Kumar  Jim Cox
Institution:(1) Department of Soil Science, CCS Haryana Agricultural University, Hisar, 125004, India;(2) Present address: South Australian Research and Development Institute, Urrbrae, SA, 5064, Australia
Abstract:The HYDRUS-ID model was experimentally tested for water balance and salt build up in soil under rice crop irrigated with different salinity water (ECiw) of 0.4, 2, 4, 6, 8 and 10 dS m−1 in micro-lysimeters filled with sandy loam soil. Differences of means between measured (M) and HYDRUS-1D predicted (P) values of bottom flux (Q o) and leachate EC as tested by paired t test were not found significant at P = 0.05 and a close agreement between RMSE values showed the applicability of the HYDRUS-1D to simulate percolation and salt concentration in the micro-lysimeters under rice crop. Potential ET values of rice as obtained from CROPWAT matched well with model predicted and measured one at all ECiw treatments. The model predicted root water uptake varied from 66.1 to 652.7 mm and the maximum daily salt concentration in the root zone was 0.46, 2.3, 4.5, 6.7, 8.4 and 10.2 me cm−3 in 0.4, 2, 4, 6, 8 and 10 dS m−1 ECiw treatments, respectively. The grain production per unit evapotranspiration ( \textWP\textET\texta {\text{WP}}_{{{\text{ET}}_{\text{a}} }} ) value of 2.56 in ECiw of 0.4 dS m−1 treatment declined to 1.31 with ECiw of 2 dS m−1. The \textWP\textET\texta {\text{WP}}_{{{\text{ET}}_{\text{a}} }} reduced to one-fifth when percolation was included in the productivity determination. Similarly, the water productivity in respect of total dry matter production (TDM) was also reduced in different treatments. Therefore, the model predicted values of water balance can be effectively utilized to calculate the water productivity of rice crop.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号