首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Canopy water use efficiency of winter wheat in the North China Plain
Authors:Feng-Hua Zhao  Gui-Rui Yu  Sheng-Gong Li  Xiao-Min Sun  Jun Li
Institution:a Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A Datun Road, Beijing 100101, China
b Graduate University of Chinese Academy of Sciences, Beijing 100039, China
c Shenyang Agricultural University, Shenyang 110016, China
Abstract:Canopy water use efficiency (W), the ratio of crop productivity to evapotranspiration (ET), is critical in determining the production and water use for winter wheat (Triticum aestivum L.) in the North China Plain, where winter wheat is a major crop and rainfall is scarce and variable. With the eddy covariance (EC) technique, we estimated canopy W of winter wheat at gross primary productivity (WG) and net ecosystem productivity (WN) levels from revival to maturing in three seasons of 2002/2003, 2003/2004 and 2004/2005 at Yucheng Agro-ecosystem Station. Meanwhile we also measured the biomass-based water use efficiency (WB). Our results indicate that WG, WN and WB showed the similar seasonal variation. Before jointing (revival-jointing), WG, WN and WB were obviously lower with the values of 2.09-3.54 g C kg−1, −0.71 to 0.06 g C kg−1 and 1.37-4.03 g kg−1, respectively. After jointing (jointing-heading), the winter wheat began to grow vigorously, and WG, WN and WB significantly increased to 5.26-6.78 g C kg−1, 1.47-1.86 g C kg−1 and 6.41-7.03 g kg−1, respectively. The maximums of WG, WN and WB occurred around the stage of heading. Thereafter, WG, WN and WB began to decrease. During the observed periods, three levels of productivity: GPP, NEP and aboveground biomass (AGB) all had fairly linear relationships with ET. The slopes of GPP-ET, NEP-ET and AGB-ET were 4.67-6.12 g C kg−1, 1.50-2.08 g C kg−1 and 6.87-11.02 g kg−1, respectively. Generally, photosynthetically active radiation (PAR) and daytime vapor pressure deficit (D) had negative effects on WG, WN and WB except for on some cloudy days with low PAR and D. In many cases, WG, WN and WB showed the similar patterns. While there were still some obvious differences between them besides in magnitude, such as their significantly different responses to PAR and D on cloudy and moist days.
Keywords:Winter wheat  Water use efficiency  Gross primary productivity  Net ecosystem productivity  Evapotranspiration  North China Plain
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号