首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Temporal variability of soil macroporosity in a fine sandy loam under mouldboard ploughing and direct drilling
Institution:1. US Army ERDC, 3909 Halls Ferry Rd, Vicksburg, MS 39180-6199, USA;2. Department of Civil and Environmental Engineering, 235 Walker Hall, Mississippi State, MS 39762-9546, USA;1. Institute for Materials Technology, Khabarovsk Research Centre at the Far Eastern Branch of the Russian Academy of Sciences (Khabarovsk, Russia), 153, Tikhookeanskaya Str., 680042 Khabarovsk, Russia;2. Pacific National University (Khabarovsk, Russia), 136, Tikhookeanskaya Str., 680042 Khabarovsk, Russia
Abstract:The temporal variability of soil porosity, especially macropores (> 50 μm), and associated porosity factors such as pore continuity, percent water-filled pore space (%WFPS), and earthworm numbers and biomass were determined over 3 years under direct-drilling and mouldboard ploughing. The study was conducted on a Charlottetown fine sandy loam, an Orthic Podzol with a humid to perhumid soil-moisture regime.Differences in soil porosity between tillage systems were mainly confined to the surface 0–8-cm soil depth. Fissures (> 300 μm), or large pores, were reduced under direct drilling compared with mouldboard ploughing, but subject to regeneration over the winter period. The absence of soil loosening caused the volume of macropores to fall below 10% during the growing season. Tillage had a residual effect on soil porosity, maintaining the volume of macropores between 11 and 18%. Differences between tillage and ice-induced porosity influenced the degree of macropore regeneration. In general, water-storage pores were similar between tillage systems. A close relationship (r2 = 0.832) was observed between dry bulk density and macroporosity under both tillage systems. The relationship between macroporosity and pore continuity (Ksat), which differed between tillage systems, indicated that a macroporosity of between 8 to 10% (v/v) would maintain adequate soil permeability. In contrast, the %WFPS, which was closely related (R2 = 0.952) to macroporosity and soil water content, indicated that the volume of macropores should exceed 14% to provide an optimum level of air-filled pore space.Under humid soil-moisture regimes, the use of macroporosity as an index of critical soil structure or limiting density needs to be based both on adequate soil permeability and on water-filled pore space. Although direct drilling maintained adequate functional porosity, the need for an optimum aerobic environment may necessitate loosening of the surface soil on an annual basis.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号