首页 | 本学科首页   官方微博 | 高级检索  
     


Glomalin-related soil protein and water relations in mycorrhizal citrus (Citrus tangerina) during soil water deficit
Authors:Ying-Ning Zou  A.K. Srivastava  Yong-Ming Huang
Affiliation:1. College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei 434025, People’s Republic of China;2. National Research Centre for Citrus, Nagpur 440 010, Maharashtra, India
Abstract:Glomalin-related soil protein (GRSP), a glycoprotein of arbuscular mycorrhizal fungi (AMF) secreted into soil, governs the aggregate stability, but the role of GRSP in soil and plant water is sparsely studied. The 24-week-old red tangerine (Citrus tangerina) inoculated with Glomus etunicatum and G. mosseae were subjected to a soil drying for 12 days as soil water deficit (SWD). Length of SWD significantly reduced mycorrhizal colonization, soil hyphal length, and leaf and soil water potential (Ψ), but increased total GRSP (T-GRSP), easily extractable GRSP (EE-GRSP), and proportion of water-stable aggregates (WSAs) in >0.25 mm size, irrespective of AMF source. The AMF-inoculated seedlings showed significantly higher T-GRSP, EE-GRSP, and leaf/soil Ψ than non-AMF seedlings during SWD. A significantly positive correlation was observed for mycorrhizal colonization versus leaf or soil Ψ, and hyphal length versus leaf Ψ, suggesting that root intra- and extra-radical hyphae participated in water transport. Interestingly, in GRSP fractions, only T-GRSP was significantly positively correlated with 0.25–1 and >0.25 mm WSA and negatively with leaf and soil Ψ. These results revealed a strong glue function of T-GRSP (not EE-GRSP and hyphae) to alter the proportional distribution of WSA size, thereby aiding toward prevention of soil water loss for improving soil–plant water relations.
Keywords:arbuscular mycorrhizas  drought  glomalin-related soil protein  mycorrhizal hyphae  water-stable aggregates
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号