首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Real-time augmentation of USDA yield grade application to beef carcasses using video image analysis
Authors:Steiner R  Wyle A M  Vote D J  Belk K E  Scanga J A  Wise J W  Tatum J D  Smith G C
Institution:Department of Animal Sciences, Colorado State University, Fort Collins 80523-1171, USA.
Abstract:In two phases, this study assessed the ability of two video image analysis (VIA) instruments, VIASCAN and Computer Vision System (CVS), to augment assignment of yield grades (YG) to beef carcasses to 0.1 of a YG at commercial packing plant speeds and to test cutout prediction accuracy of a YG augmentation system that used a prototype augmentation touchpanel grading display (designed to operate commercially in real-time). In Phase I, beef carcasses (n = 505) were circulated twice at commercial chain speeds (340 carcasses per hour) by 12 on-line USDA graders. During the first pass, on-line graders assigned a whole-number YG and a quality grade (QG) to carcasses as they would normally. During the second pass, on-line graders assigned only adjusted preliminary yield grades (APYG) and QG to carcasses, whereas the two VIA instruments measured the longissimus muscle area (LMA) of each carcass. Kidney, pelvic, and heart fat (KPH) was removed and weighed to allow computation of actual KPH percentage. Those traits were compared to the expert YG and expert YG factors. On-line USDA graders' APYG were closely related (r = 0.83) to expert APYG. Instrument-measured LMA were closely related (r = 0.88 and 0.94; mean absolute error = 0.3 and 0.2 YG units, for VIASCAN and CVS, respectively) to expert LMA. When YG were augmented using instrument-measured LMA and computed either including or neglecting actual KPH percentage, YG were closely related (r = 0.93 and 0.92, mean absolute error = 0.32 and 0.40 YG units, respectively, using VIASCAN-measured LMA; r = 0.95 and 0.94, mean absolute error = 0.24 and 0.34 YG units, respectively, using CVS-measured LMA) to expert YG. In Phase II, augmented YG were assigned (0.1 of a YG) to beef carcasses (n = 290) at commercial chain speeds using VIASCAN and CVS to determine LMA, whereas APYG and QG were determined by online graders via a touch-panel display. On-line grader YG (whole-number), expert grader YG (to the nearest 0.1 of a YG), and VIASCAN- and CVS-augmented YG (to the nearest 0.1 of a YG) accounted for 55, 71, 60, and 63% of the variation in fabricated yields of closely trimmed subprimals, respectively, suggesting that VIA systems can operate at current plant speeds and effectively augment official USDA application of YG to beef carcasses.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号