首页 | 本学科首页   官方微博 | 高级检索  
     

MEXICO风轮的气动性能预测
引用本文:洪泽东,杨 华,徐浩然,沈文忠. MEXICO风轮的气动性能预测[J]. 农业工程学报, 2013, 29(18): 67-74
作者姓名:洪泽东  杨 华  徐浩然  沈文忠
作者单位:1. 扬州大学水利与能源动力工程学院,扬州 225127;1. 扬州大学水利与能源动力工程学院,扬州 225127;1. 扬州大学水利与能源动力工程学院,扬州 225127;2. 丹麦技术大学风能系,灵比 2800
基金项目:国家自然科学基金资助项目 (50706041);科技部国际科技合作计划资助项目(2010DFA64660);扬州大学科技创新培育基金资助项目(2012CXJ048);江苏省研究生科研创新计划(CXZZ12_0898)
摘    要:动量叶素法(blade element momentum,BEM)和计算流体力学方法(computational fluid dynamics,CFD)是预测风力机气动性能的常用方法,本文基于商用MATLAB和CFX软件,对MEXICO(Model Experiments In Controlled Conditions)风轮5种风速的轴向入流工况分别采用BEM和CFD方法进行气动性能预测,其中BEM方法计算时采用Shen叶尖修正,CFD方法选用SST紊流模型求解三维雷诺时均方程。研究表明,BEM和CFD方法计算的攻角最大相对误差分别为-0.402、0.099,试验获得的来流攻角沿叶片径向分布基本处于2种方法获得的结果之间,且在叶尖处更接近CFD计算的结果;试验获得的叶片轴向力沿叶片径向分布与2种方法的预测结果基本吻合,BEM和CFD 2种方法计算的轴向力最大相对误差分别为-0.139、-0.096,当叶片进入失速状态后,BEM方法计算的切向力最大相对误差达到-0.471,表明BEM方法的预测精度有待进一步提高,研究成果可为工程模型的修正与开发提供参考。

关 键 词:风机,气动载荷,计算流体力学,攻角
收稿时间:2013-03-16
修稿时间:2013-08-19

Prediction of aerodynamic performance for MEXICO rotor
Hong Zedong,Yang Hu,Xu Haoran and Shen Wenzhong. Prediction of aerodynamic performance for MEXICO rotor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(18): 67-74
Authors:Hong Zedong  Yang Hu  Xu Haoran  Shen Wenzhong
Affiliation:1. School of Water Conservancy and Energy Power Engineering, Yangzhou University, Yangzhou, 225127, China;1. School of Water Conservancy and Energy Power Engineering, Yangzhou University, Yangzhou, 225127, China;1. School of Water Conservancy and Energy Power Engineering, Yangzhou University, Yangzhou, 225127, China;2. Department of Wind Energy, Technical University of Denmark, Lyngby, 2800, Denmark
Abstract:Abstract: The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip-flow will produce secondary flow along the blade, consecutively resulting in decreases of torque. To overcome the above-mentioned issue, a variety of tip-correction models are developed, while most models overestimate the axial and tangential forces. To optimize accuracy, a new correction model summarized from CFD results by Shen is adopted in this paper. In order to accurately simulate the separation point and the separation area which is caused by the adverse pressure gradient, the CFD method using SST turbulence model is used to solve the three-dimensional Reynolds averaged equations. The first order upwind is used for the advection schemes, and the discrete equations are solved with simple algorithms. In addition, uniform velocity and static temperature are given as inlet boundary conditions, and static pressure is given as the circumferential outer boundary condition and the outlet boundary condition. The boundaries of fan-shaped both sides are defined as rotationally periodic connection, and the freeze rotor model is applied at the interface of the rotating and stationary domains, which means the relative position of rotating and stationary domains is fixed when calculating the flow field. Speed ??no-slip conditions are applied to solid walls such as blades. In this paper, two different meshing methods are used to generate a hexahedral grid for the rotating domain and a tetrahedral grid for stationary domain, between which comparison of the deviation of axial force on 60% blade cross section under the design condition (Vtun=15 m/s) leads to a clear decision of the better mesh method with less deviation. Taking the better mesh method into consideration, the final number of rotating domain grids is calculated according to verification of grid independence, with an amount of 2,961,385. The conclusion of this paper will be illustrated from the following points: first, the comparison of the calculated and the experimental angle of attack distribution along the span direction shows that the maximum relative errors of the attack angle calculated by BEM and CFD respectively are -0.402 and 0.099; it further illustrates that the experimental results are substantially between the results obtained by the two methods, and closer to the result of CFD at the blade tip. Meanwhile, the axial force on the blade increases with increasing radius, while the tangential force shows small change. All of the axial and tangential force in each section increases with increasing wind speed. Additionally, the maximum relative errors of axial force calculated by BEM and CFD respectively are -0.139 and -0.096. In a word, the experimental data are in good agreement with the results calculated by BEM and CFD, confirming the reliability of the MEXICO data. Second, the SST turbulence model can better capture the flow separation on the blade and has high aerodynamic performance prediction accuracy for a horizontal axis wind turbine in axial inflow conditions. Finally, the comparisons of the axial and tangential forces as well as the contrast of the angle of attack indicate that the prediction accuracy of BEM method is high when the blade is not in the stall condition. However, the airfoil characteristic becomes unstable in the stall condition, and the maximum relative error of tangential force calculated by BEM is -0.471. As a result, prediction accuracy of the BEM method needs to be further improved.
Keywords:fans   aerodynamic loads   computational fluid dynamics   angle of attack
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号