首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of photosynthetic photon flux density on growth and transpiration in seedlings of Fagus sylvatica
Authors:Welander N T  Ottosson B
Institution:Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Box 49, S-230 53 Alnarp, Sweden.
Abstract:Beech seedlings (Fagus sylvatica L.) were grown in various combinations of three photosynthetic photon flux densities (PPFD, 0.7, 7.3 or 14.5 mol m(-2) day(-1)) for two years in a controlled environmental chamber. Dry mass of leaves, stem and roots, leaf area and number of leaves, and unit leaf rate were affected by both previous-year and current-year PPFD. Number of shoots and length of the main shoot were affected by previous-year PPFD but not by current-year PPFD. Number of leaves per shoot did not change with PPFD, whereas leaf dry mass/leaf area ratio was mainly affected by current-year PPFD. During the first 10 days that newly emerged seedlings were grown at a PPFD of 0.7 or 14.5 mol m(-2) day(-1), transpiration rate per unit leaf area declined. Thereafter, transpiration increased to a constant new rate. Transpiration rate per seedling was closely related to leaf area but the relationship changed with time. In two-year-old seedlings grown at various PPFD combinations of 0.7, 7.3 and 14.5 mol m(-2) day(-1) during Years 1 and 2, leaf area and transpiration rate per seedling were closely correlated at Weeks 7 and 11 after bud burst. Weak correlations were found between root dry mass and transpiration rate per seedling. During Year 2, transpiration rate per leaf area was higher at a particular PPFD in seedlings grown at a previous-year PPFD of 0.7 mol m(-2) day(-1) than in seedlings grown at a previous-year PPFD of 14.5 mol m(-2) day(-1). After transfer of two-year-old seedlings at the end of the experiment to a new PPFD (7.3 or 14.5 mol m(-2) day(-1)) for one day, transpiration rates per leaf area, measured at the new PPFD, were correlated with leaf area and root dry mass, irrespective of former PPFD treatment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号