Abstract: | Alkanes, although plentiful enough to be considered for use as feedstocks in large-scale chemical processes, are so unreactive that relatively few chemical reagents have been developed to convert them to molecules having useful functional groups. However, a recently synthesized iridium (lr) complex successfully converts alkanes into hydridoalkylmetal complexes (M + R-H --> R-M-H). This is a dihydride having the formula Cp(*)(L)lrH(2), where Cp(*) and L are abbreviations for the ligands (CH(3))(5)C(5) and (CH(3))(3)P, respectively. Irradiation with ultraviolet light causes the dihydride to lose H(2), generating the reactive intermediate Cp(*)lrL. This intermediate reacts rapidly with C-H bonds in every molecule so far tested (including alkanes) and leads to hydridoalkyliridium complexes Cp(*)(L)lr(R)(H). Evidence has been obtained that this C-H insertion, or oxidative addition, reaction proceeds through a simple three-center transition state and does not involve organic free radicals as intermediates. Thus the intermediate Cp(*)lrL reacts most rapidly with C-H bonds having relatively high bond energies, such as those at primary carbon centers, in small organic rings, and in aromatic rings. This contrasts directly with the type of hydrogen-abstraction selectivity that is characteristic of organic radicals. The hydridoalkyliridium products of the insertion reactions can be converted into functionalized organic molecules-alkyl halides-by treatment with mercuric chloride followed by halogens. Expulsion (reductive elimination) of the hydrocarbon from the hydridoalkyliridium complexes can be induced by Lewis acids or heat, regenerating the reactive intermediate Cp(*)lrL. Oxidative addition of the corresponding rhodium complexes Cp(*)RhL to alkane C-H bonds has also been observed, although the products formed in this case are much less stable and undergo reductive elimination at -20 degrees C. These and other recent observations provide an incentive for reexamining the factors that have been assumed to control the rate of reaction of transition metal complexes with C-H bonds-notably the need for electron-rich metals and the proximity of reacting centers. |