首页 | 本学科首页   官方微博 | 高级检索  
     


Calciumgehalte in Früchten von Paprika,Bohne, Quitte und Hagebutte im Verlauf des Fruchtwachstums
Authors:G. P. Mix  H. Marschner
Abstract:Calcium content in fruits of paprika, bean, quince and hip during fruit growth The Ca content and the Ca translocation into the fruits during their growth was determined in paprika and bean under controlled conditions (nutrient solution, growth room) and in quince and hip (Rosa rugosa Thumb.) under field conditions. Compared to leaves the Ca content in the fruits is very low in all 4 species and declines further during their growth. The K content, however, is similar in the leaves and in the fruits of all 4 species and remains nearly constant during fruit growth. The low Ca content of the fruits cannot directly be related to the cation exchange capacity (CEC) as there are no differences in the CEC between leaves and fruits. The generally low Ca content of the fruits and its decline during fruit growth is causally related in all 4 plant species to the low rate of Ca translocation compared to the rate of dry matter translocation into the fruits. There are, however, distinct differences between the 4 plant species in the course of the ratio Ca/dry matter translocation into the fruits: In paprika the Ca translocation into the fruits strongly declines during fruit growth and in bean the Ca translocation practically ceases with the onset of seed growth. In quince under field conditions the Ca translocation into the fruits rapidly declines at later stages and finally a translocation of Ca out of the fruit takes place (decrease in the amount of Ca/fruit). Only in hip the Ca translocation into the fruits remains constant during fruit growth. There is, however, a distinctly different distribution of Ca to the various parts within the hip fruits. The decline in Ca translocation during fruit growth can be explained in paprika and bean with a shift in water influx from the xylem (rich in Ca) to the phloem at the stage of high rates of dry matter influx into the fruit. In quince and hip, however, additional mechanisms (alternating water flux in the xylem, CEC) seem to be involved in the regulation of the Ca content of these fruits.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号