首页 | 本学科首页   官方微博 | 高级检索  
     


Impact of Humidity on Temperature-Induced Grain Sterility in Rice (Oryza sativa L)
Authors:W. M. W. Weerakoon,A. Maruyama,&   K. Ohba
Affiliation: Rice Research and Development Institute, Batalagoda, Ibbagamuwa, Sri Lanka;
 National Agricultural Research Center for Kyushu and Okinawa Region (KONARC), Nishigoshi, Kumamoto, Japan
Abstract:High temperature‐induced grain sterility in rice is becoming a serious problem in tropical rice‐growing ecosystems. We studied the mechanism of high temperature‐induced grain sterility of different rice (Oryza sativa L) cultivars at two relative humidity (RH) levels. Four varieties of Indica and Japonica rice were exposed to over 85 % RH and 60 % RH at 36/30 °C, 34/30 °C, 32/24 °C and 30/24 °C day/night air temperatures from late booting to maturity inside sunlit phytotrons. Increasing both air temperature and RH significantly increased spikelet sterility while high temperature‐induced sterility decreased significantly with decreasing RH. Neither Indica nor Japonica rice types were superior to the other in the response of their spikelets to increased air temperature and RH. Increased spikelet sterility was due to increased pollen grain sterility which reduced deposition of viable pollen grains on stigma. Reduction in sterility with decreased RH was more due to decreased spikelet temperature than to air temperature. Thus the impact of RH should be considered when interpreting the effect of high temperature on grain sterility. Spikelet fertility was curvilinearly related to spikelet temperature. Grain sterility increased when spikelet temperature increased over 30 °C while it became completely sterile at 36 °C. The ability of a variety to decrease its spikelet temperature with decreasing RH could be considered as avoidance while the variability in spikelet sterility among varieties at a given spikelet temperature could be considered as true tolerance.
Keywords:sterility    relative humidity    high temperature    pollination    heat stress
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号