摘 要: | 为实现马铃薯叶片病害识别,达到及时防治的目的,设计了一种基于压缩感知理论的马铃薯病害图像分类方法。采用K-奇异值分解算法(K-SVD)分别构造了马铃薯早疫病、晚疫病、灰霉病叶片图像病害字典,通过正交匹配追踪算法求解测试样本在不同病害字典下的稀疏系数矩阵,并进行图像重构,求解重构均方根误差。利用不同类别字典本身的差异性,测试样本重构时,误差最小的字典即为测试样本所属病害种类。与支持向量机识别算法相比,该方法能够自学习图像特征,大大降低了图像分割和特征提取复杂度。经对比测试,采用字典学习理论进行分类,马铃薯3种叶片病害单一病斑图片综合识别率达到95.33%,高于支持向量机分类识别算法(识别率92%)。
|