摘 要: | 【目的】增强荔枝表皮缺陷提取效果,满足其品质检测分级准确性要求。【方法】采用Tensorflow框架构建基于AlexNet的全卷积神经网络AlexNet-FCN,以ReLU为激活函数,Max-pooling为下采样方法,Softmax回归分类器的损失函数作为优化目标,建立荔枝表皮缺陷提取的全卷积神经网络模型,并用批量随机梯度下降法对模型进行优化。【结果】模型收敛后在验证集上裂果交并比(IoUd)为0.83,褐变交并比(IoUb)为0.60,褐变与裂果的总体交并比(IoUa)为0.68;与利用线性SVM、朴素贝叶斯分类器缺陷提取效果相比,该模型的特征提取能力显著提高。【结论】全卷积神经网络在水果表面缺陷提取中具有良好的应用前景。
|